We investigate the randomized Kaczmarz method that adaptively updates the stepsize using readily available information for solving inconsistent linear systems. A novel geometric interpretation is provided which shows that the proposed method can be viewed as an orthogonal projection method in some sense. We prove that this method converges linearly in expectation to the unique minimum Euclidean norm least-squares solution of the linear system, and provide a tight upper bound for the convergence of the proposed method. Numerical experiments are also given to illustrate the theoretical results.
We consider a general nonsymmetric second-order linear elliptic PDE in the framework of the Lax-Milgram lemma. We formulate and analyze an adaptive finite element algorithm with arbitrary polynomial degree that steers the adaptive mesh-refinement and the inexact iterative solution of the arising linear systems. More precisely, the iterative solver employs, as an outer loop, the so-called Zarantonello iteration to symmetrize the system and, as an inner loop, a uniformly contractive algebraic solver, e.g., an optimally preconditioned conjugate gradient method or an optimal geometric multigrid algorithm. We prove that the proposed inexact adaptive iteratively symmetrized finite element method (AISFEM) leads to full linear convergence and, for sufficiently small adaptivity parameters, to optimal convergence rates with respect to the overall computational cost, i.e., the total computational time. Numerical experiments underline the theory.
Parameter control has succeeded in accelerating the convergence process of evolutionary algorithms. While empirical and theoretical studies have shed light on the behavior of algorithms for single-objective optimization, little is known about how self-adaptation influences multi-objective evolutionary algorithms. In this work, we contribute (1) extensive experimental analysis of the Global Simple Evolutionary Multi-objective Algorithm (GSEMO) variants on classic problems, such as OneMinMax, LOTZ, COCZ, and (2) a novel version of GSEMO with self-adaptive mutation. To enable self-adaptation in GSEMO, we explore three self-adaptive mutation techniques from single-objective optimization and use various performance metrics, such as hypervolume and inverted generational distance, to guide the adaptation. Our experiments show that adapting the mutation rate based on single-objective optimization and hypervolume can speed up the convergence of GSEMO. Moreover, we propose a GSEMO with self-adaptive mutation, which considers optimizing for single objectives and adjusts the mutation rate for each solution individually. Our results demonstrate that the proposed method outperforms the GSEMO with static mutation rates across all the tested problems. This work provides a comprehensive benchmarking study for MOEAs and complements existing theoretical runtime analysis. Our proposed algorithm addresses interesting issues for designing MOEAs for future practical applications.
We introduce the walk-on-boundary (WoB) method for solving boundary value problems to computer graphics. WoB is a grid-free Monte Carlo solver for certain classes of second order partial differential equations. A similar Monte Carlo solver, the walk-on-spheres (WoS) method, has been recently popularized in computer graphics due to its advantages over traditional spatial discretization-based alternatives. We show that WoB's intrinsic properties yield further advantages beyond those of WoS. Unlike WoS, WoB naturally supports various boundary conditions (Dirichlet, Neumann, Robin, and mixed) for both interior and exterior domains. WoB builds upon boundary integral formulations, and it is mathematically more similar to light transport simulation in rendering than the random walk formulation of WoS. This similarity between WoB and rendering allows us to implement WoB on top of Monte Carlo ray tracing, and to incorporate advanced rendering techniques (e.g., bidirectional estimators with multiple importance sampling, the virtual point lights method, and Markov chain Monte Carlo) into WoB. WoB does not suffer from the intrinsic bias of WoS near the boundary and can estimate solutions precisely on the boundary. Our numerical results highlight the advantages of WoB over WoS as an attractive alternative to solve boundary value problems based on Monte Carlo.
Risk-limiting audits (RLAs) are a significant tool in increasing confidence in the accuracy of elections. They consist of randomized algorithms which check that an election's vote tally, as reported by a vote tabulation system, corresponds to the correct candidates winning. If an initial vote count leads to the wrong election winner, an RLA guarantees to identify the error with high probability over its own randomness. These audits operate by sequentially sampling and examining ballots until they can either confirm the reported winner or identify the true winner. The first part of this work suggests a new generic method, called ``Batchcomp", for converting classical (ballot-level) RLAs into ones that operate on batches. As a concrete application of the suggested method, we develop the first ballot-level RLA for the Israeli Knesset elections, and convert it to one which operates on batches. We ran the suggested ``Batchcomp" procedure on the results of 22nd, 23rd and 24th Knesset elections, both with and without errors. The second part of this work suggests a new use-case for RLAs: verifying that a population census leads to the correct allocation of political power to a nation's districts or federal-states. We present an adaptation of ALPHA, an existing RLA method, to a method which applies to censuses. Our census-RLA is applicable in nations where parliament seats are allocated to geographical regions in proportion to their population according to a certain class of functions (highest averages). It relies on data from both the census and from an additional procedure which is already conducted in many countries today, called a post-enumeration survey.
Recently proposed Generalized Time-domain Velocity Vector (GTVV) is a generalization of relative room impulse response in spherical harmonic (aka Ambisonic) domain that allows for blind estimation of early-echo parameters: the directions and relative delays of individual reflections. However, the derived closed-form expression of GTVV mandates few assumptions to hold, most important being that the impulse response of the reference signal needs to be a minimum-phase filter. In practice, the reference is obtained by spatial filtering towards the Direction-of-Arrival of the source, and the aforementioned condition is bounded by the performance of the applied beamformer (and thus, by the Ambisonic array order). In the present work, we suggest to circumvent this problem by properly modelling the GTVV time series, which permits not only to relax the initial assumptions, but also to extract the information therein is a more consistent and efficient manner, entering the realm of blind system identification. Experiments using measured room impulse responses confirm the effectiveness of the proposed approach.
When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.
In 2013, Marcus, Spielman, and Srivastava resolved the famous Kadison-Singer conjecture. It states that for $n$ independent random vectors $v_1,\cdots, v_n$ that have expected squared norm bounded by $\epsilon$ and are in the isotropic position in expectation, there is a positive probability that the determinant polynomial $\det(xI - \sum_{i=1}^n v_iv_i^\top)$ has roots bounded by $(1 + \sqrt{\epsilon})^2$. An interpretation of the Kadison-Singer theorem is that we can always find a partition of the vectors $v_1,\cdots,v_n$ into two sets with a low discrepancy in terms of the spectral norm (in other words, rely on the determinant polynomial). In this paper, we provide two results for a broader class of polynomials, the hyperbolic polynomials. Furthermore, our results are in two generalized settings: $\bullet$ The first one shows that the Kadison-Singer result requires a weaker assumption that the vectors have a bounded sum of hyperbolic norms. $\bullet$ The second one relaxes the Kadison-Singer result's distribution assumption to the Strongly Rayleigh distribution. To the best of our knowledge, the previous results only support determinant polynomials [Anari and Oveis Gharan'14, Kyng, Luh and Song'20]. It is unclear whether they can be generalized to a broader class of polynomials. In addition, we also provide a sub-exponential time algorithm for constructing our results.
We investigate an infinite-horizon average reward Markov Decision Process (MDP) with delayed, composite, and partially anonymous reward feedback. The delay and compositeness of rewards mean that rewards generated as a result of taking an action at a given state are fragmented into different components, and they are sequentially realized at delayed time instances. The partial anonymity attribute implies that a learner, for each state, only observes the aggregate of past reward components generated as a result of different actions taken at that state, but realized at the observation instance. We propose an algorithm named $\mathrm{DUCRL2}$ to obtain a near-optimal policy for this setting and show that it achieves a regret bound of $\tilde{\mathcal{O}}\left(DS\sqrt{AT} + d (SA)^3\right)$ where $S$ and $A$ are the sizes of the state and action spaces, respectively, $D$ is the diameter of the MDP, $d$ is a parameter upper bounded by the maximum reward delay, and $T$ denotes the time horizon. This demonstrates the optimality of the bound in the order of $T$, and an additive impact of the delay.
Accurately estimating the probability of failure for safety-critical systems is important for certification. Estimation is often challenging due to high-dimensional input spaces, dangerous test scenarios, and computationally expensive simulators; thus, efficient estimation techniques are important to study. This work reframes the problem of black-box safety validation as a Bayesian optimization problem and introduces an algorithm, Bayesian safety validation, that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce a set of three acquisition functions that focus on reducing uncertainty by covering the design space, optimizing the analytically derived failure boundaries, and sampling the predicted failure regions. Mainly concerned with systems that only output a binary indication of failure, we show that our method also works well in cases where more output information is available. Results show that Bayesian safety validation achieves a better estimate of the probability of failure using orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate the algorithm on three test problems with access to ground truth and on a real-world safety-critical subsystem common in autonomous flight: a neural network-based runway detection system. This work is open sourced and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.