Video Visual Relation Detection (VidVRD), has received significant attention of our community over recent years. In this paper, we apply the state-of-the-art video object tracklet detection pipeline MEGA and deepSORT to generate tracklet proposals. Then we perform VidVRD in a tracklet-based manner without any pre-cutting operations. Specifically, we design a tracklet-based visual Transformer. It contains a temporal-aware decoder which performs feature interactions between the tracklets and learnable predicate query embeddings, and finally predicts the relations. Experimental results strongly demonstrate the superiority of our method, which outperforms other methods by a large margin on the Video Relation Understanding (VRU) Grand Challenge in ACM Multimedia 2021. Codes are released at //github.com/Dawn-LX/VidVRD-tracklets.
Evidence from cognitive psychology suggests that understanding spatio-temporal object interactions and dynamics can be essential for recognizing actions in complex videos. Therefore, action recognition models are expected to benefit from explicit modeling of objects, including their appearance, interaction, and dynamics. Recently, video transformers have shown great success in video understanding, exceeding CNN performance. Yet, existing video transformer models do not explicitly model objects. In this work, we present Object-Region Video Transformers (ORViT), an \emph{object-centric} approach that extends video transformer layers with a block that directly incorporates object representations. The key idea is to fuse object-centric spatio-temporal representations throughout multiple transformer layers. Our ORViT block consists of two object-level streams: appearance and dynamics. In the appearance stream, an ``Object-Region Attention'' element applies self-attention over the patches and \emph{object regions}. In this way, visual object regions interact with uniform patch tokens and enrich them with contextualized object information. We further model object dynamics via a separate ``Object-Dynamics Module'', which captures trajectory interactions, and show how to integrate the two streams. We evaluate our model on standard and compositional action recognition on Something-Something V2, standard action recognition on Epic-Kitchen100 and Diving48, and spatio-temporal action detection on AVA. We show strong improvement in performance across all tasks and datasets considered, demonstrating the value of a model that incorporates object representations into a transformer architecture. For code and pretrained models, visit the project page at //roeiherz.github.io/ORViT/.
Video captioning is a challenging task since it requires generating sentences describing various diverse and complex videos. Existing video captioning models lack adequate visual representation due to the neglect of the existence of gaps between videos and texts. To bridge this gap, in this paper, we propose a CLIP4Caption framework that improves video captioning based on a CLIP-enhanced video-text matching network (VTM). This framework is taking full advantage of the information from both vision and language and enforcing the model to learn strongly text-correlated video features for text generation. Besides, unlike most existing models using LSTM or GRU as the sentence decoder, we adopt a Transformer structured decoder network to effectively learn the long-range visual and language dependency. Additionally, we introduce a novel ensemble strategy for captioning tasks. Experimental results demonstrate the effectiveness of our method on two datasets: 1) on MSR-VTT dataset, our method achieved a new state-of-the-art result with a significant gain of up to 10% in CIDEr; 2) on the private test data, our method ranking 2nd place in the ACM MM multimedia grand challenge 2021: Pre-training for Video Understanding Challenge. It is noted that our model is only trained on the MSR-VTT dataset.
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a transformer architecture for robust object tracking. Different from classic usage of the transformer in natural language processing tasks, we separate its encoder and decoder into two parallel branches and carefully design them within the Siamese-like tracking pipelines. The transformer encoder promotes the target templates via attention-based feature reinforcement, which benefits the high-quality tracking model generation. The transformer decoder propagates the tracking cues from previous templates to the current frame, which facilitates the object searching process. Our transformer-assisted tracking framework is neat and trained in an end-to-end manner. With the proposed transformer, a simple Siamese matching approach is able to outperform the current top-performing trackers. By combining our transformer with the recent discriminative tracking pipeline, our method sets several new state-of-the-art records on prevalent tracking benchmarks.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Scene graph construction / visual relationship detection from an image aims to give a precise structural description of the objects (nodes) and their relationships (edges). The mutual promotion of object detection and relationship detection is important for enhancing their individual performance. In this work, we propose a new framework, called semantics guided graph relation neural network (SGRN), for effective visual relationship detection. First, to boost the object detection accuracy, we introduce a source-target class cognoscitive transformation that transforms the features of the co-occurent objects to the target object domain to refine the visual features. Similarly, source-target cognoscitive transformations are used to refine features of objects from features of relations, and vice versa. Second, to boost the relation detection accuracy, besides the visual features of the paired objects, we embed the class probability of the object and subject separately to provide high level semantic information. In addition, to reduce the search space of relationships, we design a semantics-aware relationship filter to exclude those object pairs that have no relation. We evaluate our approach on the Visual Genome dataset and it achieves the state-of-the-art performance for visual relationship detection. Additionally, Our approach also significantly improves the object detection performance (i.e. 4.2\% in mAP accuracy).
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Spatiotemporal feature learning in videos is a fundamental problem in computer vision. This paper presents a new architecture, termed as Appearance-and-Relation Network (ARTNet), to learn video representation in an end-to-end manner. ARTNets are constructed by stacking multiple generic building blocks, called as SMART, whose goal is to simultaneously model appearance and relation from RGB input in a separate and explicit manner. Specifically, SMART blocks decouple the spatiotemporal learning module into an appearance branch for spatial modeling and a relation branch for temporal modeling. The appearance branch is implemented based on the linear combination of pixels or filter responses in each frame, while the relation branch is designed based on the multiplicative interactions between pixels or filter responses across multiple frames. We perform experiments on three action recognition benchmarks: Kinetics, UCF101, and HMDB51, demonstrating that SMART blocks obtain an evident improvement over 3D convolutions for spatiotemporal feature learning. Under the same training setting, ARTNets achieve superior performance on these three datasets to the existing state-of-the-art methods.
Discrete correlation filter (DCF) based trackers have shown considerable success in visual object tracking. These trackers often make use of low to mid level features such as histogram of gradients (HoG) and mid-layer activations from convolution neural networks (CNNs). We argue that including semantically higher level information to the tracked features may provide further robustness to challenging cases such as viewpoint changes. Deep salient object detection is one example of such high level features, as it make use of semantic information to highlight the important regions in the given scene. In this work, we propose an improvement over DCF based trackers by combining saliency based and other features based filter responses. This combination is performed with an adaptive weight on the saliency based filter responses, which is automatically selected according to the temporal consistency of visual saliency. We show that our method consistently improves a baseline DCF based tracker especially in challenging cases and performs superior to the state-of-the-art. Our improved tracker operates at 9.3 fps, introducing a small computational burden over the baseline which operates at 11 fps.
Reasoning about the relationships between object pairs in images is a crucial task for holistic scene understanding. Most of the existing works treat this task as a pure visual classification task: each type of relationship or phrase is classified as a relation category based on the extracted visual features. However, each kind of relationships has a wide variety of object combination and each pair of objects has diverse interactions. Obtaining sufficient training samples for all possible relationship categories is difficult and expensive. In this work, we propose a natural language guided framework to tackle this problem. We propose to use a generic bi-directional recurrent neural network to predict the semantic connection between the participating objects in the relationship from the aspect of natural language. The proposed simple method achieves the state-of-the-art on the Visual Relationship Detection (VRD) and Visual Genome datasets, especially when predicting unseen relationships (e.g. recall improved from 76.42% to 89.79% on VRD zero-shot testing set).