亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous Dynamic System (DS)-based algorithms hold a pivotal and foundational role in the field of Learning from Demonstration (LfD). Nevertheless, they confront the formidable challenge of striking a delicate balance between achieving precision in learning and ensuring the overall stability of the system. In response to this substantial challenge, this paper introduces a novel DS algorithm rooted in neural network technology. This algorithm not only possesses the capability to extract critical insights from demonstration data but also demonstrates the capacity to learn a candidate Lyapunov energy function that is consistent with the provided data. The model presented in this paper employs a straightforward neural network architecture that excels in fulfilling a dual objective: optimizing accuracy while simultaneously preserving global stability. To comprehensively evaluate the effectiveness of the proposed algorithm, rigorous assessments are conducted using the LASA dataset, further reinforced by empirical validation through a robotic experiment.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The covariance matrix adaptation evolution strategy (CMA-ES) is a stochastic search algorithm using a multivariate normal distribution for continuous black-box optimization. In addition to strong empirical results, part of the CMA-ES can be described by a stochastic natural gradient method and can be derived from information geometric optimization (IGO) framework. However, there are some components of the CMA-ES, such as the rank-one update, for which the theoretical understanding is limited. While the rank-one update makes the covariance matrix to increase the likelihood of generating a solution in the direction of the evolution path, this idea has been difficult to formulate and interpret as a natural gradient method unlike the rank-$\mu$ update. In this work, we provide a new interpretation of the rank-one update in the CMA-ES from the perspective of the natural gradient with prior distribution. First, we propose maximum a posteriori IGO (MAP-IGO), which is the IGO framework extended to incorporate a prior distribution. Then, we derive the rank-one update from the MAP-IGO by setting the prior distribution based on the idea that the promising mean vector should exist in the direction of the evolution path. Moreover, the newly derived rank-one update is extensible, where an additional term appears in the update for the mean vector. We empirically investigate the properties of the additional term using various benchmark functions.

Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.

Deep learning algorithms have been widely used to solve linear Kolmogorov partial differential equations~(PDEs) in high dimensions, where the loss function is defined as a mathematical expectation. We propose to use the randomized quasi-Monte Carlo (RQMC) method instead of the Monte Carlo (MC) method for computing the loss function. In theory, we decompose the error from empirical risk minimization~(ERM) into the generalization error and the approximation error. Notably, the approximation error is independent of the sampling methods. We prove that the convergence order of the mean generalization error for the RQMC method is $O(n^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$, while for the MC method it is $O(n^{-1/2+\epsilon})$ for arbitrarily small $\epsilon>0$. Consequently, we find that the overall error for the RQMC method is asymptotically smaller than that for the MC method as $n$ increases. Our numerical experiments show that the algorithm based on the RQMC method consistently achieves smaller relative $L^{2}$ error than that based on the MC method.

We consider the method of mappings for performing shape optimization for unsteady fluid-structure interaction (FSI) problems. In this work, we focus on the numerical implementation. We model the optimization problem such that it takes several theoretical results into account, such as regularity requirements on the transformations and a differential geometrical point of view on the manifold of shapes. Moreover, we discretize the problem such that we can compute exact discrete gradients. This allows for the use of general purpose optimization solvers. We focus on an FSI benchmark problem to validate our numerical implementation. The method is used to optimize parts of the outer boundary and the interface. The numerical simulations build on FEniCS, dolfin-adjoint and IPOPT. Moreover, as an additional theoretical result, we show that for a linear special case the adjoint attains the same structure as the forward problem but reverses the temporal flow of information.

Accelerating iterative eigenvalue algorithms is often achieved by employing a spectral shifting strategy. Unfortunately, improved shifting typically leads to a smaller eigenvalue for the resulting shifted operator, which in turn results in a high condition number of the underlying solution matrix, posing a major challenge for iterative linear solvers. This paper introduces a two-level domain decomposition preconditioner that addresses this issue for the linear Schr\"odinger eigenvalue problem, even in the presence of a vanishing eigenvalue gap in non-uniform, expanding domains. Since the quasi-optimal shift, which is already available as the solution to a spectral cell problem, is required for the eigenvalue solver, it is logical to also use its associated eigenfunction as a generator to construct a coarse space. We analyze the resulting two-level additive Schwarz preconditioner and obtain a condition number bound that is independent of the domain's anisotropy, despite the need for only one basis function per subdomain for the coarse solver. Several numerical examples are presented to illustrate its flexibility and efficiency.

We propose the Compact Coupling Interface Method (CCIM), a finite difference method capable of obtaining second-order accurate approximations of not only solution values but their gradients, for elliptic complex interface problems with interfacial jump conditions. Such elliptic interface boundary value problems with interfacial jump conditions are a critical part of numerous applications in fields such as heat conduction, fluid flow, materials science, and protein docking, to name a few. A typical example involves the construction of biomolecular shapes, where such elliptic interface problems are in the form of linearized Poisson-Boltzmann equations, involving discontinuous dielectric constants across the interface, that govern electrostatic contributions. Additionally, when interface dynamics are involved, the normal velocity of the interface might be comprised of the normal derivatives of solution, which can be approximated to second-order by our method, resulting in accurate interface dynamics. Our method, which can be formulated in arbitrary spatial dimensions, combines elements of the highly-regarded Coupling Interface Method, for such elliptic interface problems, and Smereka's second-order accurate discrete delta function. The result is a variation and hybrid with a more compact stencil than that found in the Coupling Interface Method, and with advantages, borne out in numerical experiments involving both geometric model problems and complex biomolecular surfaces, in more robust error profiles.

The moments of the coefficients of elliptic curve L-functions are related to numerous arithmetic problems. Rosen and Silverman proved a conjecture of Nagao relating the first moment of one-parameter families satisfying Tate's conjecture to the rank of the corresponding elliptic surface over Q(T); one can also construct families of moderate rank by finding families with large first moments. Michel proved that if j(T) is not constant, then the second moment of the family is of size p^2 + O(p^(3/2)); these two moments show that for suitably small support the behavior of zeros near the central point agree with that of eigenvalues from random matrix ensembles, with the higher moments impacting the rate of convergence. In his thesis, Miller noticed a negative bias in the second moment of every one-parameter family of elliptic curves over the rationals whose second moment had a calculable closed-form expression, specifically the first lower order term which does not average to zero is on average negative. This Bias Conjecture is confirmed for many families; however, these are highly non-generic families whose resulting Legendre sums can be determined. Inspired by the recent successes by Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver, Alexey Pozdnyakov and others in investigations of murmurations of elliptic curve coefficients with machine learning techniques, we pose a similar problem for trying to understand the Bias Conjecture. As a start to this program, we numerically investigate the Bias Conjecture for a family whose bias is positive for half the primes. Since the numerics do not offer conclusive evidence that negative bias for the other half is enough to overwhelm the positive bias, the Bias Conjecture cannot be verified for the family.

We introduce an innovative approach for solving high-dimensional Fokker-Planck-L\'evy (FPL) equations in modeling non-Brownian processes across disciplines such as physics, finance, and ecology. We utilize a fractional score function and Physical-informed neural networks (PINN) to lift the curse of dimensionality (CoD) and alleviate numerical overflow from exponentially decaying solutions with dimensions. The introduction of a fractional score function allows us to transform the FPL equation into a second-order partial differential equation without fractional Laplacian and thus can be readily solved with standard physics-informed neural networks (PINNs). We propose two methods to obtain a fractional score function: fractional score matching (FSM) and score-fPINN for fitting the fractional score function. While FSM is more cost-effective, it relies on known conditional distributions. On the other hand, score-fPINN is independent of specific stochastic differential equations (SDEs) but requires evaluating the PINN model's derivatives, which may be more costly. We conduct our experiments on various SDEs and demonstrate numerical stability and effectiveness of our method in dealing with high-dimensional problems, marking a significant advancement in addressing the CoD in FPL equations.

We introduce a distributed algorithm, termed noise-robust distributed maximum consensus (RD-MC), for estimating the maximum value within a multi-agent network in the presence of noisy communication links. Our approach entails redefining the maximum consensus problem as a distributed optimization problem, allowing a solution using the alternating direction method of multipliers. Unlike existing algorithms that rely on multiple sets of noise-corrupted estimates, RD-MC employs a single set, enhancing both robustness and efficiency. To further mitigate the effects of link noise and improve robustness, we apply moving averaging to the local estimates. Through extensive simulations, we demonstrate that RD-MC is significantly more robust to communication link noise compared to existing maximum-consensus algorithms.

The classical theory of Kosambi-Cartan-Chern (KCC) developed in differential geometry provides a powerful method for analyzing the behaviors of dynamical systems. In the KCC theory, the properties of a dynamical system are described in terms of five geometrical invariants, of which the second corresponds to the so-called Jacobi stability of the system. Different from that of the Lyapunov stability that has been studied extensively in the literature, the analysis of the Jacobi stability has been investigated more recently using geometrical concepts and tools. It turns out that the existing work on the Jacobi stability analysis remains theoretical and the problem of algorithmic and symbolic treatment of Jacobi stability analysis has yet to be addressed. In this paper, we initiate our study on the problem for a class of ODE systems of arbitrary dimension and propose two algorithmic schemes using symbolic computation to check whether a nonlinear dynamical system may exhibit Jacobi stability. The first scheme, based on the construction of the complex root structure of a characteristic polynomial and on the method of quantifier elimination, is capable of detecting the existence of the Jacobi stability of the given dynamical system. The second algorithmic scheme exploits the method of semi-algebraic system solving and allows one to determine conditions on the parameters for a given dynamical system to have a prescribed number of Jacobi stable fixed points. Several examples are presented to demonstrate the effectiveness of the proposed algorithmic schemes.

北京阿比特科技有限公司