亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The literature focuses on the mean of welfare regret, which can lead to undesirable treatment choice due to sensitivity to sampling uncertainty. We propose to minimize the mean of a nonlinear transformation of regret and show that singleton rules are not essentially complete for nonlinear regret. Focusing on mean square regret, we derive closed-form fractions for finite-sample Bayes and minimax optimal rules. Our approach is grounded in decision theory and extends to limit experiments. The treatment fractions can be viewed as the strength of evidence favoring treatment. We apply our framework to a normal regression model and sample size calculation.

相關內容

Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often when evaluating solution over a fixed time period it becomes clear that the objective value will not increase with additional computation time (for example when a two wheeled robot continuously spins on the spot). In such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches to stop the evaluation are problem specific and need to be specifically designed for the task at hand. Therefore, we propose an early stopping method for direct policy search. The proposed method only looks at the objective value at each time step and requires no problem specific knowledge. We test the introduced stopping criterion in five direct policy search environments drawn from games, robotics and classic control domains, and show that it can save up to 75% of the computation time. We also compare it with problem specific stopping criteria and show that it performs comparably, while being more generally applicable.

Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called \textbf{MT-CSD}), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (\textbf{GLAN}) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47\%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at \url{//github.com/nfq729/MT-CSD}.

The defects of the traditional strapdown inertial navigation algorithms become well acknowledged and the corresponding enhanced algorithms have been quite recently proposed trying to mitigate both theoretical and algorithmic defects. In this paper, the analytical accuracy evaluation of both the traditional algorithms and the enhanced algorithms is investigated, against the true reference for the first time enabled by the functional iteration approach having provable convergence. The analyses by the help of MATLAB Symbolic Toolbox show that the resultant error orders of all algorithms under investigation are consistent with those in the existing literatures, and the enhanced attitude algorithm notably reduces error orders of the traditional counterpart, while the impact of the enhanced velocity algorithm on error order reduction is insignificant. Simulation results agree with analyses that the superiority of the enhanced algorithm over the traditional one in the body-frame attitude computation scenario diminishes significantly in the entire inertial navigation computation scenario, while the functional iteration approach possesses significant accuracy superiority even under sustained lowly dynamic conditions.

Principal stratification analysis evaluates how causal effects of a treatment on a primary outcome vary across strata of units defined by their treatment effect on some intermediate quantity. This endeavor is substantially challenged when the intermediate variable is continuously scaled and there are infinitely many basic principal strata. We employ a Bayesian nonparametric approach to flexibly evaluate treatment effects across flexibly-modeled principal strata. The approach uses Bayesian Causal Forests (BCF) to simultaneously specify two Bayesian Additive Regression Tree models; one for the principal stratum membership and one for the outcome, conditional on principal strata. We show how the capability of BCF for capturing treatment effect heterogeneity is particularly relevant for assessing how treatment effects vary across the surface defined by continuously-scaled principal strata, in addition to other benefits relating to targeted selection and regularization-induced confounding. The capabilities of the proposed approach are illustrated with a simulation study, and the methodology is deployed to investigate how causal effects of power plant emissions control technologies on ambient particulate pollution vary as a function of the technologies' impact on sulfur dioxide emissions.

Compositional data find broad application across diverse fields due to their efficacy in representing proportions or percentages of various components within a whole. Spatial dependencies often exist in compositional data, particularly when the data represents different land uses or ecological variables. Ignoring the spatial autocorrelations in modelling of compositional data may lead to incorrect estimates of parameters. Hence, it is essential to incorporate spatial information into the statistical analysis of compositional data to obtain accurate and reliable results. However, traditional statistical methods are not directly applicable to compositional data due to the correlation between its observations, which are constrained to lie on a simplex. To address this challenge, the Dirichlet distribution is commonly employed, as its support aligns with the nature of compositional vectors. Specifically, the R package DirichletReg provides a regression model, termed Dirichlet regression, tailored for compositional data. However, this model fails to account for spatial dependencies, thereby restricting its utility in spatial contexts. In this study, we introduce a novel spatial autoregressive Dirichlet regression model for compositional data, adeptly integrating spatial dependencies among observations. We construct a maximum likelihood estimator for a Dirichlet density function augmented with a spatial lag term. We compare this spatial autoregressive model with the same model without spatial lag, where we test both models on synthetic data as well as two real datasets, using different metrics. By considering the spatial relationships among observations, our model provides more accurate and reliable results for the analysis of compositional data. The model is further evaluated against a spatial multinomial regression model for compositional data, and their relative effectiveness is discussed.

Homomorphic encryption, which enables the execution of arithmetic operations directly on ciphertexts, is a promising solution for protecting privacy of cloud-delegated computations on sensitive data. However, the correctness of the computation result is not ensured. We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations under different trade-offs and without compromising on the features of the encryption algorithm. Our authenticators operate on top of trending ring learning with errors based fully homomorphic encryption schemes over the integers. We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data. We show that contrary to prior work VERITAS supports verification of any homomorphic operation and we demonstrate its practicality for various applications, such as ride-hailing, genomic-data analysis, encrypted search, and machine-learning training and inference.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司