Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often when evaluating solution over a fixed time period it becomes clear that the objective value will not increase with additional computation time (for example when a two wheeled robot continuously spins on the spot). In such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches to stop the evaluation are problem specific and need to be specifically designed for the task at hand. Therefore, we propose an early stopping method for direct policy search. The proposed method only looks at the objective value at each time step and requires no problem specific knowledge. We test the introduced stopping criterion in five direct policy search environments drawn from games, robotics and classic control domains, and show that it can save up to 75% of the computation time. We also compare it with problem specific stopping criteria and show that it performs comparably, while being more generally applicable.
Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, each of which is parameterized with continuous variables. The best learned agent can score goals more reliably than the 2012 RoboCup champion agent. As such, this paper represents a successful extension of deep reinforcement learning to the class of parameterized action space MDPs.
The acquisition of physical artifacts not only involves transferring existing information into the digital ecosystem but also generates information as a process itself, underscoring the importance of meticulous management of FAIR data and metadata. In addition, the diversity of objects within the cultural heritage domain is reflected in a multitude of descriptive models. The digitization process expands the opportunities for exchange and joint utilization, granted that the descriptive schemas are made interoperable in advance. To achieve this goal, we propose a replicable workflow for metadata schema crosswalks that facilitates the preservation and accessibility of cultural heritage in the digital ecosystem. This work presents a methodology for metadata generation and management in the case study of the digital twin of the temporary exhibition "The Other Renaissance - Ulisse Aldrovandi and the Wonders of the World". The workflow delineates a systematic, step-by-step transformation of tabular data into RDF format, to enhance Linked Open Data. The methodology adopts the RDF Mapping Language (RML) technology for converting data to RDF with a human contribution involvement. This last aspect entails an interaction between digital humanists and domain experts through surveys leading to the abstraction and reformulation of domain-specific knowledge, to be exploited in the process of formalizing and converting information.
Quantum copy protection, introduced by Aaronson, enables giving out a quantum program-description that cannot be meaningfully duplicated. Despite over a decade of study, copy protection is only known to be possible for a very limited class of programs. As our first contribution, we show how to achieve "best-possible" copy protection for all programs. We do this by introducing quantum state indistinguishability obfuscation (qsiO), a notion of obfuscation for quantum descriptions of classical programs. We show that applying qsiO to a program immediately achieves best-possible copy protection. Our second contribution is to show that, assuming injective one-way functions exist, qsiO is concrete copy protection for a large family of puncturable programs -- significantly expanding the class of copy-protectable programs. A key tool in our proof is a new variant of unclonable encryption (UE) that we call coupled unclonable encryption (cUE). While constructing UE in the standard model remains an important open problem, we are able to build cUE from one-way functions. If we additionally assume the existence of UE, then we can further expand the class of puncturable programs for which qsiO is copy protection. Finally, we construct qsiO relative to an efficient quantum oracle.
Text summarization models have typically focused on optimizing aspects of quality such as fluency, relevance, and coherence, particularly in the context of news articles. However, summarization models are increasingly being used to summarize diverse sources of text, such as social media data, that encompass a wide demographic user base. It is thus crucial to assess not only the quality of the generated summaries, but also the extent to which they can fairly represent the opinions of diverse social groups. Position bias, a long-known issue in news summarization, has received limited attention in the context of social multi-document summarization. We deeply investigate this phenomenon by analyzing the effect of group ordering in input documents when summarizing tweets from three distinct linguistic communities: African-American English, Hispanic-aligned Language, and White-aligned Language. Our empirical analysis shows that although the textual quality of the summaries remains consistent regardless of the input document order, in terms of fairness, the results vary significantly depending on how the dialect groups are presented in the input data. Our results suggest that position bias manifests differently in social multi-document summarization, severely impacting the fairness of summarization models.
Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: //github.com/seunghan96/pits.
There are many different forms of design knowledge that guide and shape a designer's ability to act and realize potential realities. Methods and schemas are examples of design knowledge commonly used by design researchers and designers alike. In this pictorial, we explore, engage, and describe the role of schemas as tools that can support design researchers in formulating methods to support design action, with our framing of method design specifically focused on ethical design complexity. We present four ways for method designers to engage with schema: 1) Systems to operationalize complex design constructs such as ethical design complexity through an A.E.I.O.YOU schema; 2) Classifiers to map existing methods and identify the possibility for new methods through descriptive semantic differentials; 3) Tools that enable the creation of methods that relate to one or more elements of the schema through creative departures from research to design; and 4) Interactive channels to playfully engage potential and new opportunities through schema interactivity.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).