Real-time global illumination is key to enabling more dynamic and physically realistic worlds in performance-critical applications such as games or any other applications with real-time constraints.Hardware-accelerated ray tracing in modern GPUs allows arbitrary intersection queries against the geometry, making it possible to evaluate indirect lighting entirely at runtime. However, only a small number of rays can be traced at each pixel to maintain high framerates at ever-increasing image resolutions. Existing solutions, such as probe-based techniques, approximate the irradiance signal at the cost of a few rays per frame but suffer from a lack of details and slow response times to changes in lighting. On the other hand, reservoir-based resampling techniques capture much more details but typically suffer from poorer performance and increased amounts of noise, making them impractical for the current generation of hardware and gaming consoles. To find a balance that achieves high lighting fidelity while maintaining a low runtime cost, we propose a solution that dynamically estimates global illumination without needing any content preprocessing, thus enabling easy integration into existing real-time rendering pipelines.
Time-series anomaly detection deals with the problem of detecting anomalous timesteps by learning normality from the sequence of observations. However, the concept of normality evolves over time, leading to a "new normal problem", where the distribution of normality can be changed due to the distribution shifts between training and test data. This paper highlights the prevalence of the new normal problem in unsupervised time-series anomaly detection studies. To tackle this issue, we propose a simple yet effective test-time adaptation strategy based on trend estimation and a self-supervised approach to learning new normalities during inference. Extensive experiments on real-world benchmarks demonstrate that incorporating the proposed strategy into the anomaly detector consistently improves the model's performance compared to the baselines, leading to robustness to the distribution shifts.
Event cameras are bio-inspired, motion-activated sensors that demonstrate substantial potential in handling challenging situations, such as motion blur and high-dynamic range. In this paper, we proposed EVI-SAM to tackle the problem of 6 DoF pose tracking and 3D reconstruction using monocular event camera. A novel event-based hybrid tracking framework is designed to estimate the pose, leveraging the robustness of feature matching and the precision of direct alignment. Specifically, we develop an event-based 2D-2D alignment to construct the photometric constraint, and tightly integrate it with the event-based reprojection constraint. The mapping module recovers the dense and colorful depth of the scene through the image-guided event-based mapping method. Subsequently, the appearance, texture, and surface mesh of the 3D scene can be reconstructed by fusing the dense depth map from multiple viewpoints using truncated signed distance function (TSDF) fusion. To the best of our knowledge, this is the first non-learning work to realize event-based dense mapping. Numerical evaluations are performed on both publicly available and self-collected datasets, which qualitatively and quantitatively demonstrate the superior performance of our method. Our EVI-SAM effectively balances accuracy and robustness while maintaining computational efficiency, showcasing superior pose tracking and dense mapping performance in challenging scenarios. Video Demo: //youtu.be/Nn40U4e5Si8.
Designing a system-on-chip (SoC) for deep neural network (DNN) acceleration requires balancing multiple metrics such as latency, power, and area. However, most existing methods ignore the interactions among different SoC components and rely on inaccurate and error-prone evaluation tools, leading to inferior SoC design. In this paper, we present SoC-Tuner, a DNN-targeting exploration framework to find the Pareto optimal set of SoC configurations efficiently. Our framework constructs a thorough SoC design space of all components and divides the exploration into three phases. We propose an importance-based analysis to prune the design space, a sampling algorithm to select the most representative initialization points, and an information-guided multi-objective optimization method to balance multiple design metrics of SoC design. We validate our framework with the actual very-large-scale-integration (VLSI) flow on various DNN benchmarks and show that it outperforms previous methods. To the best of our knowledge, this is the first work to construct an exploration framework of SoCs for DNN acceleration.
Language-conditioned robotic manipulation represents a cutting-edge area of research, enabling seamless communication and cooperation between humans and robotic agents. This field focuses on teaching robotic systems to comprehend and execute instructions conveyed in natural language. To achieve this, the development of robust language understanding models capable of extracting actionable insights from textual input is essential. In this comprehensive survey, we systematically explore recent advancements in language-conditioned approaches within the context of robotic manipulation. We analyze these approaches based on their learning paradigms, which encompass reinforcement learning, imitation learning, and the integration of foundational models, such as large language models and vision-language models. Furthermore, we conduct an in-depth comparative analysis, considering aspects like semantic information extraction, environment & evaluation, auxiliary tasks, and task representation. Finally, we outline potential future research directions in the realm of language-conditioned learning for robotic manipulation, with the topic of generalization capabilities and safety issues.
Recent research has demonstrated the efficacy of pre-training graph neural networks (GNNs) to capture the transferable graph semantics and enhance the performance of various downstream tasks. However, the semantic knowledge learned from pretext tasks might be unrelated to the downstream task, leading to a semantic gap that limits the application of graph pre-training. To reduce this gap, traditional approaches propose hybrid pre-training to combine various pretext tasks together in a multi-task learning fashion and learn multi-grained knowledge, which, however, cannot distinguish tasks and results in some transferable task-specific knowledge distortion by each other. Moreover, most GNNs cannot distinguish nodes located in different parts of the graph, making them fail to learn position-specific knowledge and lead to suboptimal performance. In this work, inspired by the prompt-based tuning in natural language processing, we propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs through a prompt mechanism, namely multi-task graph dual prompt (ULTRA-DP). Based on this framework, we propose a prompt-based transferability test to find the most relevant pretext task in order to reduce the semantic gap. To implement the hybrid pre-training tasks, beyond the classical edge prediction task (node-node level), we further propose a novel pre-training paradigm based on a group of $k$-nearest neighbors (node-group level). The combination of them across different scales is able to comprehensively express more structural semantics and derive richer multi-grained knowledge. Extensive experiments show that our proposed ULTRA-DP can significantly enhance the performance of hybrid pre-training methods and show the generalizability to other pre-training tasks and backbone architectures.
Super-resolution (SR) techniques have recently been proposed to upscale the outputs of neural radiance fields (NeRF) and generate high-quality images with enhanced inference speeds. However, existing NeRF+SR methods increase training overhead by using extra input features, loss functions, and/or expensive training procedures such as knowledge distillation. In this paper, we aim to leverage SR for efficiency gains without costly training or architectural changes. Specifically, we build a simple NeRF+SR pipeline that directly combines existing modules, and we propose a lightweight augmentation technique, random patch sampling, for training. Compared to existing NeRF+SR methods, our pipeline mitigates the SR computing overhead and can be trained up to 23x faster, making it feasible to run on consumer devices such as the Apple MacBook. Experiments show our pipeline can upscale NeRF outputs by 2-4x while maintaining high quality, increasing inference speeds by up to 18x on an NVIDIA V100 GPU and 12.8x on an M1 Pro chip. We conclude that SR can be a simple but effective technique for improving the efficiency of NeRF models for consumer devices.
Recent advances in learning techniques have garnered attention for their applicability to a diverse range of real-world sequential decision-making problems. Yet, many practical applications have critical constraints for operation in real environments. Most learning solutions often neglect the risk of failing to meet these constraints, hindering their implementation in real-world contexts. In this paper, we propose a risk-aware decision-making framework for contextual bandit problems, accommodating constraints and continuous action spaces. Our approach employs an actor multi-critic architecture, with each critic characterizing the distribution of performance and constraint metrics. Our framework is designed to cater to various risk levels, effectively balancing constraint satisfaction against performance. To demonstrate the effectiveness of our approach, we first compare it against state-of-the-art baseline methods in a synthetic environment, highlighting the impact of intrinsic environmental noise across different risk configurations. Finally, we evaluate our framework in a real-world use case involving a 5G mobile network where only our approach consistently satisfies the system constraint (a signal processing reliability target) with a small performance toll (8.5% increase in power consumption).
Systematic reviews (SRs) - the librarian-assisted literature survey of scholarly articles takes time and requires significant human resources. Given the ever-increasing volume of published studies, applying existing computing and informatics technology can decrease this time and resource burden. Due to the revolutionary advances in (1) Generative AI such as ChatGPT, and (2) External knowledge-augmented information extraction efforts such as Retrieval-Augmented Generation, In this work, we explore the use of techniques from (1) and (2) for SR. We demonstrate a system that takes user queries, performs query expansion to obtain enriched context (includes additional terms and definitions by querying language models and knowledge graphs), and uses this context to search for articles on scholarly databases to retrieve articles. We perform qualitative evaluations of our system through comparison against sentinel (ground truth) articles provided by an in-house librarian. The demo can be found at: //youtu.be/zMdP56GJ9mU.
In Autonomous Driving (AD), real-time perception is a critical component responsible for detecting surrounding objects to ensure safe driving. While researchers have extensively explored the integrity of AD perception due to its safety and security implications, the aspect of availability (real-time performance) or latency has received limited attention. Existing works on latency-based attack have focused mainly on object detection, i.e., a component in camera-based AD perception, overlooking the entire camera-based AD perception, which hinders them to achieve effective system-level effects, such as vehicle crashes. In this paper, we propose SlowTrack, a novel framework for generating adversarial attacks to increase the execution time of camera-based AD perception. We propose a novel two-stage attack strategy along with the three new loss function designs. Our evaluation is conducted on four popular camera-based AD perception pipelines, and the results demonstrate that SlowTrack significantly outperforms existing latency-based attacks while maintaining comparable imperceptibility levels. Furthermore, we perform the evaluation on Baidu Apollo, an industry-grade full-stack AD system, and LGSVL, a production-grade AD simulator, with two scenarios to compare the system-level effects of SlowTrack and existing attacks. Our evaluation results show that the system-level effects can be significantly improved, i.e., the vehicle crash rate of SlowTrack is around 95% on average while existing works only have around 30%.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.