亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Flexible grid Optical Networks are efficient mechanism to provide flexibility in the optical spectrum utilization. For such networks, the slot width size as specified by the ITU-T G.694.1 is 12.5 GHz. However, one should question if it is the optimal grid size? In this paper, under different bandwidth distribution scenarios, we review which slot size give appropriate spectrum efficiency. Moreover, we present a study of the slot sizes with varying incoming traffic having some bandwidth requirement under different scenarios.

相關內容

We propose a new approach to model the collective dynamics of a population of particles evolving with time. As is often the case in challenging scientific applications, notably single-cell genomics, measuring features for these particles requires destroying them. As a result, the population can only be monitored with periodic snapshots, obtained by sampling a few particles that are sacrificed in exchange for measurements. Given only access to these snapshots, can we reconstruct likely individual trajectories for all other particles? We propose to model these trajectories as collective realizations of a causal Jordan-Kinderlehrer-Otto (JKO) flow of measures: The JKO scheme posits that the new configuration taken by a population at time $t+1$ is one that trades off an improvement, in the sense that it decreases an energy, while remaining close (in Wasserstein distance) to the previous configuration observed at $t$. In order to learn such an energy using only snapshots, we propose JKOnet, a neural architecture that computes (in end-to-end differentiable fashion) the JKO flow given a parametric energy and initial configuration of points. We demonstrate the good performance and robustness of the JKOnet fitting procedure, compared to a more direct forward method.

Consider the problem of nonparametric estimation of an unknown $\beta$-H\"older smooth density $p_{XY}$ at a given point, where $X$ and $Y$ are both $d$ dimensional. An infinite sequence of i.i.d.\ samples $(X_i,Y_i)$ are generated according to this distribution, and two terminals observe $(X_i)$ and $(Y_i)$, respectively. They are allowed to exchange $k$ bits either in oneway or interactively in order for Bob to estimate the unknown density. We show that the minimax mean square risk is order $\left(\frac{k}{\log k} \right)^{-\frac{2\beta}{d+2\beta}}$ for one-way protocols and $k^{-\frac{2\beta}{d+2\beta}}$ for interactive protocols. The logarithmic improvement is nonexistent in the parametric counterparts, and therefore can be regarded as a consequence of nonparametric nature of the problem. Moreover, a few rounds of interactions achieve the interactive minimax rate: the number of rounds can grow as slowly as the super-logarithm (i.e., inverse tetration) of $k$. The proof of the upper bound is based on a novel multi-round scheme for estimating the joint distribution of a pair of biased Bernoulli variables.

A nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the PDE is proved for general Dirichlet boundary conditions. Then a H^2-conforming discretization is introduced to approximate the solution of the PDE and a fixed point algorithm is proposed to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that non trivial shapes can be achieved using periodic Miura tessellations.

Skills or low-level policies in reinforcement learning are temporally extended actions that can speed up learning and enable complex behaviours. Recent work in offline reinforcement learning and imitation learning has proposed several techniques for skill discovery from a set of expert trajectories. While these methods are promising, the number K of skills to discover is always a fixed hyperparameter, which requires either prior knowledge about the environment or an additional parameter search to tune it. We first propose a method for offline learning of options (a particular skill framework) exploiting advances in variational inference and continuous relaxations. We then highlight an unexplored connection between Bayesian nonparametrics and offline skill discovery, and show how to obtain a nonparametric version of our model. This version is tractable thanks to a carefully structured approximate posterior with a dynamically-changing number of options, removing the need to specify K. We also show how our nonparametric extension can be applied in other skill frameworks, and empirically demonstrate that our method can outperform state-of-the-art offline skill learning algorithms across a variety of environments. Our code is available at //github.com/layer6ai-labs/BNPO .

This paper introduces the first statistically consistent estimator of the optimal transport map between two probability distributions, based on neural networks. Building on theoretical and practical advances in the field of Lipschitz neural networks, we define a Lipschitz-constrained generative adversarial network penalized by the quadratic transportation cost. Then, we demonstrate that, under regularity assumptions, the obtained generator converges uniformly to the optimal transport map as the sample size increases to infinity. Furthermore, we show through a number of numerical experiments that the learnt mapping has promising performances. In contrast to previous work tackling either statistical guarantees or practicality, we provide an expressive and feasible estimator which paves way for optimal transport applications where the asymptotic behaviour must be certified.

A Bohemian matrix family is a set of matrices all of whose entries are drawn from a fixed, usually discrete and hence bounded, subset of a field of characteristic zero. Originally these were integers -- hence the name, from the acronym BOunded HEight Matrix of Integers (BOHEMI) -- but other kinds of entries are also interesting. Some kinds of questions about Bohemian matrices can be answered by numerical computation, but sometimes exact computation is better. In this paper we explore some Bohemian families (symmetric, upper Hessenberg, or Toeplitz) computationally, and answer some open questions posed about the distributions of eigenvalue densities.

Deep Learning is applied to energy markets to predict extreme loads observed in energy grids. Forecasting energy loads and prices is challenging due to sharp peaks and troughs that arise due to supply and demand fluctuations from intraday system constraints. We propose deep spatio-temporal models and extreme value theory (EVT) to capture theses effects and in particular the tail behavior of load spikes. Deep LSTM architectures with ReLU and $\tanh$ activation functions can model trends and temporal dependencies while EVT captures highly volatile load spikes above a pre-specified threshold. To illustrate our methodology, we use hourly price and demand data from 4719 nodes of the PJM interconnection, and we construct a deep predictor. We show that DL-EVT outperforms traditional Fourier time series methods, both in-and out-of-sample, by capturing the observed nonlinearities in prices. Finally, we conclude with directions for future research.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司