亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present CorPipe, the winning entry to the CRAC 2023 Shared Task on Multilingual Coreference Resolution. Our system is an improved version of our earlier multilingual coreference pipeline, and it surpasses other participants by a large margin of 4.5 percent points. CorPipe first performs mention detection, followed by coreference linking via an antecedent-maximization approach on the retrieved spans. Both tasks are trained jointly on all available corpora using a shared pretrained language model. Our main improvements comprise inputs larger than 512 subwords and changing the mention decoding to support ensembling. The source code is available at //github.com/ufal/crac2023-corpipe.

相關內容

Interactive visual grounding in Human-Robot Interaction (HRI) is challenging yet practical due to the inevitable ambiguity in natural languages. It requires robots to disambiguate the user input by active information gathering. Previous approaches often rely on predefined templates to ask disambiguation questions, resulting in performance reduction in realistic interactive scenarios. In this paper, we propose TiO, an end-to-end system for interactive visual grounding in human-robot interaction. Benefiting from a unified formulation of visual dialogue and grounding, our method can be trained on a joint of extensive public data, and show superior generality to diversified and challenging open-world scenarios. In the experiments, we validate TiO on GuessWhat?! and InViG benchmarks, setting new state-of-the-art performance by a clear margin. Moreover, we conduct HRI experiments on the carefully selected 150 challenging scenes as well as real-robot platforms. Results show that our method demonstrates superior generality to diversified visual and language inputs with a high success rate. Codes and demos are available at //github.com/jxu124/TiO.

This paper presents new solutions for Private Information Retrieval (PIR) with side information. This problem is motivated by PIR settings in which a client has side information about the data held by the servers and would like to leverage this information in order to improve the download rate. The problem of PIR with side information has been the subject of several recent studies that presented achievability schemes as well as converses for both multi-server and single-server settings. However, the solutions for the multi-server settings adapted from the solutions for the single-server setting in a rather straightforward manner, relying on the concept of super-messages. Such solutions require an exponential degree of sub-packetization (in terms of the number of messages). This paper makes the following contributions. First, we revisit the PIR problem with side information and present a new approach to leverage side information in the context of PIR. The key idea of our approach is a randomized algorithm to determine the linear combinations of the sub-packets that need to be recovered from each server. In addition, our approach takes advantage of the fact that the identity of the side information messages does not need to be kept private, and, as a result, the information retrieval scheme does not need to be symmetric. Second, we present schemes for PIR with side information that achieve a higher rate than previously proposed solutions and require a significantly lower degree of sub-packetization (linear in the number of servers). Our scheme not only achieves the highest known download rate for the problem at hand but also invalidates a previously claimed converse bound on the maximum achievable download rate.

Physical systems can often be described via a continuous-time dynamical system. In practice, the true system is often unknown and has to be learned from measurement data. Since data is typically collected in discrete time, e.g. by sensors, most methods in Gaussian process (GP) dynamics model learning are trained on one-step ahead predictions. This can become problematic in several scenarios, e.g. if measurements are provided at irregularly-sampled time steps or physical system properties have to be conserved. Thus, we aim for a GP model of the true continuous-time dynamics. Higher-order numerical integrators provide the necessary tools to address this problem by discretizing the dynamics function with arbitrary accuracy. Many higher-order integrators require dynamics evaluations at intermediate time steps making exact GP inference intractable. In previous work, this problem is often tackled by approximating the GP posterior with variational inference. However, exact GP inference is preferable in many scenarios, e.g. due to its mathematical guarantees. In order to make direct inference tractable, we propose to leverage multistep and Taylor integrators. We demonstrate how to derive flexible inference schemes for these types of integrators. Further, we derive tailored sampling schemes that allow to draw consistent dynamics functions from the learned posterior. This is crucial to sample consistent predictions from the dynamics model. We demonstrate empirically and theoretically that our approach yields an accurate representation of the continuous-time system.

This paper reports on the design and results of the 2024 ICASSP SP Cadenza Challenge: Music Demixing/Remixing for Hearing Aids. The Cadenza project is working to enhance the audio quality of music for those with a hearing loss. The scenario for the challenge was listening to stereo reproduction over loudspeakers via hearing aids. The task was to: decompose pop/rock music into vocal, drums, bass and other (VDBO); rebalance the different tracks with specified gains and then remixing back to stereo. End-to-end approaches were also accepted. 17 systems were submitted by 11 teams. Causal systems performed poorer than non-causal approaches. 9 systems beat the baseline. A common approach was to fine-tuning pretrained demixing models. The best approach used an ensemble of models.

Explanations of AI systems rarely address the information needs of people affected by algorithmic decision-making (ADM). This gap between conveyed information and information that matters to affected stakeholders can impede understanding and adherence to regulatory frameworks such as the AI Act. To address this gap, we present the "XAI Novice Question Bank": A catalog of affected stakeholders' information needs in two ADM use cases (employment prediction and health monitoring), covering the categories data, system context, system usage, and system specifications. Information needs were gathered in an interview study where participants received explanations in response to their inquiries. Participants further reported their understanding and decision confidence, showing that while confidence tended to increase after receiving explanations, participants also met understanding challenges, such as being unable to tell why their understanding felt incomplete. Explanations further influenced participants' perceptions of the systems' risks and benefits, which they confirmed or changed depending on the use case. When risks were perceived as high, participants expressed particular interest in explanations about intention, such as why and to what end a system was put in place. With this work, we aim to support the inclusion of affected stakeholders into explainability by contributing an overview of information and challenges relevant to them when deciding on the adoption of ADM systems. We close by summarizing our findings in a list of six key implications that inform the design of future explanations for affected stakeholder audiences.

The ICASSP 2024 Speech Signal Improvement Grand Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. This marks our second challenge, building upon the success from the previous ICASSP 2023 Grand Challenge. We enhance the competition by introducing a dataset synthesizer, enabling all participating teams to start at a higher baseline, an objective metric for our extended P.804 tests, transcripts for the 2023 test set, and we add Word Accuracy (WAcc) as a metric. We evaluate a total of 13 systems in the real-time track and 11 systems in the non-real-time track using both subjective P.804 and objective Word Accuracy metrics.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.

北京阿比特科技有限公司