亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide bounds on the compression size of the solutions to 22 problems in computer science. For each problem, we show that solutions exist with high probability, for some simple probability measure. Once this is proven, derandomization can be used to prove the existence of a simple solution.

相關內容

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

SeDuMi and SDPT3 are two solvers for solving Semi-definite Programming (SDP) or Linear Matrix Inequality (LMI) problems. A computational performance comparison of these two are undertaken in this paper regarding the Stability of Continuous-time Linear Systems. The comparison mainly focuses on computational times and memory requirements for different scales of problems. To implement and compare the two solvers on a set of well-posed problems, we employ YALMIP, a widely used toolbox for modeling and optimization in MATLAB. The primary goal of this study is to provide an empirical assessment of the relative computational efficiency of SeDuMi and SDPT3 under varying problem conditions. Our evaluation indicates that SDPT3 performs much better in large-scale, high-precision calculations.

Most video platforms provide video streaming services with different qualities, and the quality of the services is usually adjusted by the resolution of the videos. So high-resolution videos need to be downsampled for compression. In order to solve the problem of video coding at different resolutions, we propose a rate-guided arbitrary rescaling network (RARN) for video resizing before encoding. To help the RARN be compatible with standard codecs and generate compression-friendly results, an iteratively optimized transformer-based virtual codec (TVC) is introduced to simulate the key components of video encoding and perform bitrate estimation. By iteratively training the TVC and the RARN, we achieved 5%-29% BD-Rate reduction anchored by linear interpolation under different encoding configurations and resolutions, exceeding the previous methods on most test videos. Furthermore, the lightweight RARN structure can process FHD (1080p) content at real-time speed (91 FPS) and obtain a considerable rate reduction.

We propose, analyze and implement a virtual element discretization for an interfacial poroelasticity-elasticity consolidation problem. The formulation of the time-dependent poroelasticity equations uses displacement, fluid pressure, and total pressure, and the elasticity equations are written in the displacement-pressure formulation. The construction of the virtual element scheme does not require Lagrange multipliers to impose the transmission conditions (continuity of displacement and total traction, and no-flux for the fluid) on the interface. We show the stability and convergence of the virtual element method for different polynomial degrees, and the error bounds are robust with respect to delicate model parameters (such as Lame constants, permeability, and storativity coefficient). Finally, we provide numerical examples that illustrate the properties of the scheme.

One of the ultimate goals of Artificial Intelligence is to assist humans in complex decision making. A promising direction for achieving this goal is Neuro-Symbolic AI, which aims to combine the interpretability of symbolic techniques with the ability of deep learning to learn from raw data. However, most current approaches require manually engineered symbolic knowledge, and where end-to-end training is considered, such approaches are either restricted to learning definite programs, or are restricted to training binary neural networks. In this paper, we introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data, whilst learning symbolic knowledge that maps latent concepts to target labels. The novelty of our approach is a method for biasing the learning of symbolic knowledge, based on the in-training performance of both neural and symbolic components. We evaluate NSIL on three problem domains of different complexity, including an NP-complete problem. Our results demonstrate that NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency. Code and technical appendix: //github.com/DanCunnington/NSIL

Including a large number of predictors in the imputation model underlying a multiple imputation (MI) procedure is one of the most challenging tasks imputers face. A variety of high-dimensional MI techniques can help, but there has been limited research on their relative performance. In this study, we investigated a wide range of extant high-dimensional MI techniques that can handle a large number of predictors in the imputation models and general missing data patterns. We assessed the relative performance of seven high-dimensional MI methods with a Monte Carlo simulation study and a resampling study based on real survey data. The performance of the methods was defined by the degree to which they facilitate unbiased and confidencevalid estimates of the parameters of complete data analysis models. We found that using lasso penalty or forward selection to select the predictors used in the MI model and using principal component analysis to reduce the dimensionality of auxiliary data produce the best results.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

北京阿比特科技有限公司