This paper introduces a novel zero-shot motion planning method that allows users to quickly design smooth robot motions in Cartesian space. A B\'ezier curve-based Cartesian plan is transformed into a joint space trajectory by our neuro-inspired inverse kinematics (IK) method CycleIK, for which we enable platform independence by scaling it to arbitrary robot designs. The motion planner is evaluated on the physical hardware of the two humanoid robots NICO and NICOL in a human-in-the-loop grasping scenario. Our method is deployed with an embodied agent that is a large language model (LLM) at its core. We generalize the embodied agent, that was introduced for NICOL, to also be embodied by NICO. The agent can execute a discrete set of physical actions and allows the user to verbally instruct various different robots. We contribute a grasping primitive to its action space that allows for precise manipulation of household objects. The new CycleIK method is compared to popular numerical IK solvers and state-of-the-art neural IK methods in simulation and is shown to be competitive with or outperform all evaluated methods when the algorithm runtime is very short. The grasping primitive is evaluated on both NICOL and NICO robots with a reported grasp success of 72% to 82% for each robot, respectively.
Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a novel technology which enables the full-space coverage. In this letter, a multi STAR-RIS-aided system using non-orthogonal multiple access in an uplink transmission is considered, where the multi-order reflections among multiple STAR-RISs assist the transmission from the single-antenna users to the multi-antenna base station. Specifically, the total sum rate maximization problem is solved by jointly optimizing the active beamforming, power allocation, transmission and reflection beamforming at the STAR-RIS, and user-STAR-RIS assignment. To solve the non-convex optimization problem, a novel deep reinforcement learning algorithm is proposed which integrates meta-learning and deep deterministic policy gradient (DDPG), denoted by Meta-DDPG. Numerical results demonstrate that our proposed Meta-DDPG algorithm outperforms the conventional DDPG algorithm with $53\%$ improvement, while multi-order reflections among multi STAR-RISs yields to $14.1\%$ enhancement in the total data rate.
This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features. These features are carefully selected to reflect potential model limitations or biases. This can be useful to find a practical compromise between efficiency -- by providing informative predictions -- and algorithmic fairness -- by ensuring equalized coverage for the most sensitive groups. We demonstrate the validity and effectiveness of this method on simulated and real data sets.
In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), a paradigm designed to generate personalized urban itineraries from user requests articulated in natural language. This approach is different from traditional itinerary planning, which often restricts the granularity of user inputs, thus hindering genuine personalization. To this end, we present ItiNera, an OUIP system that synergizes spatial optimization with large language models (LLMs) to provide services that customize urban itineraries based on users' needs. Upon receiving the user's itinerary request, the LLM first decomposes it into detailed components, identifying key requirements, including preferences and dislikes. Then, we use these specifics to select candidate POIs from a large-scale collection using embedding-based Preference-aware POI Retrieval. Finally, a preference score-based Cluster-aware Spatial Optimization module clusters, filters, and orders these POIs, followed by the LLM for detailed POI selection and organization to craft a personalized, spatially coherent itinerary. Moreover, we created an LLM-based pipeline to update and personalize a user-owned POI database. This ensures up-to-date POI information, supports itinerary planning, pre-trip research, POI collection, recommendations, and more. To the best of our knowledge, this study marks the first integration of LLMs to innovate itinerary planning, with potential extensions for various urban travel and exploration activities. Offline and online evaluations demonstrate the capacity of our system to deliver more responsive, personalized, and spatially coherent itineraries than current solutions. Our system, deployed on an online platform, has attracted thousands of users for their urban travel planning.
This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and effective personal mobility generation. LLMs overcome the limitations of previous models by effectively processing semantic data and offering versatility in modeling various tasks. Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. We evaluate our LLM agent framework and compare it with state-of-the-art personal mobility generation approaches, demonstrating the effectiveness of our approach and its potential applications in urban mobility. Overall, this study marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.
Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian Belief Propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages over a graphical model. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach can efficiently handle complex dependence structures. GEnBP is advantageous when the ensemble size may be considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including data assimilation, system identification and hierarchical models. Supporting code is available at //github.com/danmackinlay/GEnBP
This paper introduces a novel bio-mimetic approach for distributed control of robotic swarms, inspired by the collective behaviors of swarms in nature such as schools of fish and flocks of birds. The agents are assumed to have limited sensory perception, lack memory, be Identical, anonymous, and operate without interagent explicit communication. Despite these limitations, we demonstrate that collaborative exploration and task allocation can be executed by applying simple local rules of interactions between the agents. A comprehensive model comprised of agent, formation, and swarm layers is proposed in this paper, where each layer performs a specific function in shaping the swarm's collective behavior, thereby contributing to the emergence of the anticipated behaviors. We consider four principles combined in the design of the distributed control process: Cohesiveness, Flexibility, Attraction-Repulsion, and Peristaltic Motion. We design the control algorithms as reactive behaviour that enables the swarm to maintain connectivity, adapt to dynamic environments, spread out and cover a region with a size determined by the number of agents, and respond to various local task requirements. We explore some simple broadcast control-based steering methods, that result in inducing "anonymous ad-hoc leaders" among the agents, capable of guiding the swarm towards yet unexplored regions with further tasks. Our analysis is complemented by simulations, validating the efficacy of our algorithms. The experiments with various scenarios showcase the swarm`s capability to self-organize and perform tasks effectively under the proposed framework. The possible implementations include domains that necessitate emergent coordination and control in multi-agent systems, without the need for advanced individual abilities or direct communication.
In this paper we introduce a novel Neural Networks-based approach for approximating solutions to the (2D) incompressible Navier--Stokes equations. Our algorithm uses a Physics-informed Neural Network, that approximates the vorticity based on a loss function that uses a computationally efficient formulation of the Random Vortex dynamics. The neural vorticity estimator is then combined with traditional numerical PDE-solvers for the Poisson equation to compute the velocity field. The main advantage of our method compared to standard Physics-informed Neural Networks is that it strictly enforces physical properties, such as incompressibility or boundary conditions, which might otherwise be hard to guarantee with purely Neural Networks-based approaches.
This paper presents an extended version of the SPADE platform, which aims to empower intelligent agent systems with normative reasoning and value alignment capabilities. Normative reasoning involves evaluating social norms and their impact on decision-making, while value alignment ensures agents' actions are in line with desired principles and ethical guidelines. The extended platform equips agents with normative awareness and reasoning capabilities based on deontic logic, allowing them to assess the appropriateness of their actions and make informed decisions. By integrating normative reasoning and value alignment, the platform enhances agents' social intelligence and promotes responsible and ethical behaviors in complex environments.
In this paper, we propose low-complexity local detectors and log-likelihood ratio (LLR) refinement techniques for a coded cell-free massive multiple input multiple output (CF- mMIMO) systems, where an iterative detection and decoding (IDD) scheme is applied using parallel interference cancellation (PIC) and access point (AP) selection. In particular, we propose three LLR processing schemes based on the individual processing of the LLRs of each AP, LLR censoring, and a linear combination of LLRs by assuming statistical independence. We derive new closed-form expressions for the local soft minimum mean square error (MMSE)-PIC detector and receive matched filter (RMF). We also examine the system performance as the number of iterations increases. Simulations assess the performance of the proposed techniques against existing approaches.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.