TestGen automatically generates unit tests, carved from serialized observations of complex objects, observed during app execution. We describe the development and deployment of TestGen at Meta. In particular, we focus on the scalability challenges overcome during development in order to deploy observation-based test carving at scale in industry. So far, TestGen has landed 518 tests into production, which have been executed 9,617,349 times in continuous integration, finding 5,702 faults. Meta is currently in the process of more widespread deployment. Our evaluation reveals that, when carving its observations from 4,361 reliable end-to-end tests, TestGen was able to generate tests for at least 86\% of the classes covered by end-to-end tests. Testing on 16 Kotlin Instagram app-launch-blocking tasks demonstrated that the TestGen tests would have trapped 13 of these before they became launch blocking.
Existing person re-identification methods have achieved remarkable advances in appearance-based identity association across homogeneous cameras, such as ground-ground matching. However, as a more practical scenario, aerial-ground person re-identification (AGPReID) among heterogeneous cameras has received minimal attention. To alleviate the disruption of discriminative identity representation by dramatic view discrepancy as the most significant challenge in AGPReID, the view-decoupled transformer (VDT) is proposed as a simple yet effective framework. Two major components are designed in VDT to decouple view-related and view-unrelated features, namely hierarchical subtractive separation and orthogonal loss, where the former separates these two features inside the VDT, and the latter constrains these two to be independent. In addition, we contribute a large-scale AGPReID dataset called CARGO, consisting of five/eight aerial/ground cameras, 5,000 identities, and 108,563 images. Experiments on two datasets show that VDT is a feasible and effective solution for AGPReID, surpassing the previous method on mAP/Rank1 by up to 5.0%/2.7% on CARGO and 3.7%/5.2% on AG-ReID, keeping the same magnitude of computational complexity. Our project is available at //github.com/LinlyAC/VDT-AGPReID
Researchers and developers increasingly rely on toxicity scoring to moderate generative language model outputs, in settings such as customer service, information retrieval, and content generation. However, toxicity scoring may render pertinent information inaccessible, rigidify or "value-lock" cultural norms, and prevent language reclamation processes, particularly for marginalized people. In this work, we extend the concept of algorithmic recourse to generative language models: we provide users a novel mechanism to achieve their desired prediction by dynamically setting thresholds for toxicity filtering. Users thereby exercise increased agency relative to interactions with the baseline system. A pilot study ($n = 30$) supports the potential of our proposed recourse mechanism, indicating improvements in usability compared to fixed-threshold toxicity-filtering of model outputs. Future work should explore the intersection of toxicity scoring, model controllability, user agency, and language reclamation processes -- particularly with regard to the bias that many communities encounter when interacting with generative language models.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.
Recent advancements in large language models (LLMs) have highlighted the potential for vulnerability detection, a crucial component of software quality assurance. Despite this progress, most studies have been limited to the perspective of a single role, usually testers, lacking diverse viewpoints from different roles in a typical software development life-cycle, including both developers and testers. To this end, this paper introduces an approach to employ LLMs to act as different roles to simulate real-life code review process, engaging in discussions towards a consensus on the existence and classification of vulnerabilities in the code. Preliminary evaluation of the proposed approach indicates a 4.73% increase in the precision rate, 58.9% increase in the recall rate, and a 28.1% increase in the F1 score.
We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.
The task of text2motion is to generate motion sequences from given textual descriptions, where a model should explore the interactions between natural language instructions and human body movements. While most existing works are confined to coarse-grained motion descriptions (e.g., "A man squats."), fine-grained ones specifying movements of relevant body parts are barely explored. Models trained with coarse texts may not be able to learn mappings from fine-grained motion-related words to motion primitives, resulting in the failure in generating motions from unseen descriptions. In this paper, we build a large-scale language-motion dataset with fine-grained textual descriptions, FineHumanML3D, by feeding GPT-3.5-turbo with delicate prompts. Accordingly, we design a new text2motion model, FineMotionDiffuse, which makes full use of fine-grained textual information. Our experiments show that FineMotionDiffuse trained on FineHumanML3D acquires good results in quantitative evaluation. We also find this model can better generate spatially/chronologically composite motions by learning the implicit mappings from simple descriptions to the corresponding basic motions.
We present the design and implementation of a tool for semi-automatic verification of functional specifications of operating system modules. Such verification tasks are traditionally done in interactive theorem provers, where the functionalities of the module are specified at abstract and concrete levels using data such as structures, algebraic datatypes, arrays, maps and so on. In this work, we provide encodings to SMT for these commonly occurring data types. This allows verification conditions to be reduced into a form suitable for SMT solvers. The use of SMT solvers combined with a tactic language allows semi-automatic verification of the specification. We apply the tool to verify functional specification for key parts of the uC-OS/II operating system, based on earlier work giving full verification of the system in Coq. We demonstrate a large reduction in the amount of human effort due to increased level of automation.
Shared control can ease and enhance a human operator's ability to teleoperate robots, particularly for intricate tasks demanding fine control over multiple degrees of freedom. However, the arbitration process dictating how much autonomous assistance to administer in shared control can confuse novice operators and impede their understanding of the robot's behavior. To overcome these adverse side-effects, we propose a novel formulation of shared control that enables operators to tailor the arbitration to their unique capabilities and preferences. Unlike prior approaches to customizable shared control where users could indirectly modify the latent parameters of the arbitration function by issuing a feedback command, we instead make these parameters observable and directly editable via a virtual reality (VR) interface. We present our user-customizable shared control method for a teleoperation task in SE(3), known as the buzz wire game. A user study is conducted with participants teleoperating a robotic arm in VR to complete the game. The experiment spanned two weeks per subject to investigate longitudinal trends. Our findings reveal that users allowed to interactively tune the arbitration parameters across trials generalize well to adaptations in the task, exhibiting improvements in precision and fluency over direct teleoperation and conventional shared control.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.