亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning has gained popularity as a means of training models distributed across the wireless edge. The paper introduces delay-aware federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training by addressing communication delays between edge and cloud. DFL employs multiple stochastic gradient descent iterations on device datasets during each global aggregation interval and intermittently aggregates model parameters through edge servers in local subnetworks. The cloud server synchronizes the local models with the global deployed model computed via a local-global combiner at global synchronization. The convergence behavior of DFL is theoretically investigated under a generalized data heterogeneity metric. A set of conditions is obtained to achieve the sub-linear convergence rate of O(1/k). Based on these findings, an adaptive control algorithm is developed for DFL, implementing policies to mitigate energy consumption and edge-to-cloud communication latency while aiming for a sublinear convergence rate. Numerical evaluations show DFL's superior performance in terms of faster global model convergence, reduced resource consumption, and robustness against communication delays compared to existing FL algorithms. In summary, this proposed method offers improved efficiency and satisfactory results when dealing with both convex and non-convex loss functions.

相關內容

Federated Learning (FL) is a privacy-preserving distributed machine learning approach geared towards applications in edge devices. However, the problem of designing custom neural architectures in federated environments is not tackled from the perspective of overall system efficiency. In this paper, we propose DC-NAS -- a divide-and-conquer approach that performs supernet-based Neural Architecture Search (NAS) in a federated system by systematically sampling the search space. We propose a novel diversified sampling strategy that balances exploration and exploitation of the search space by initially maximizing the distance between the samples and progressively shrinking this distance as the training progresses. We then perform channel pruning to reduce the training complexity at the devices further. We show that our approach outperforms several sampling strategies including Hadamard sampling, where the samples are maximally separated. We evaluate our method on the CIFAR10, CIFAR100, EMNIST, and TinyImagenet benchmarks and show a comprehensive analysis of different aspects of federated learning such as scalability, and non-IID data. DC-NAS achieves near iso-accuracy as compared to full-scale federated NAS with 50% fewer resources.

Effective communication is crucial for deploying robots in mission-specific tasks, but inadequate or unreliable communication can greatly reduce mission efficacy, for example in search and rescue missions where communication-denied conditions may occur. In such missions, robots are deployed to locate targets, such as human survivors, but they might get trapped at hazardous locations, such as in a trapping pit or by debris. Thus, the information the robot collected is lost owing to the lack of communication. In our prior work, we developed the notion of a path-based sensor. A path-based sensor detects whether or not an event has occurred along a particular path, but it does not provide the exact location of the event. Such path-based sensor observations are well-suited to communication-denied environments, and various studies have explored methods to improve information gathering in such settings. In some missions it is typical for target elements to be in close proximity to hazardous factors that hinder the information-gathering process. In this study, we examine a similar scenario and conduct experiments to determine if additional knowledge about the correlation between hazards and targets improves the efficiency of information gathering. To incorporate this knowledge, we utilize a Bayesian network representation of domain knowledge and develop an algorithm based on this representation. Our empirical investigation reveals that such additional information on correlation is beneficial only in environments with moderate hazard lethality, suggesting that while knowledge of correlation helps, further research and development is necessary for optimal outcomes.

Different from conventional federated learning, personalized federated learning (PFL) is able to train a customized model for each individual client according to its unique requirement. The mainstream approach is to adopt a kind of weighted aggregation method to generate personalized models, in which weights are determined by the loss value or model parameters among different clients. However, such kinds of methods require clients to download others' models. It not only sheer increases communication traffic but also potentially infringes data privacy. In this paper, we propose a new PFL algorithm called \emph{FedDWA (Federated Learning with Dynamic Weight Adjustment)} to address the above problem, which leverages the parameter server (PS) to compute personalized aggregation weights based on collected models from clients. In this way, FedDWA can capture similarities between clients with much less communication overhead. More specifically, we formulate the PFL problem as an optimization problem by minimizing the distance between personalized models and guidance models, so as to customize aggregation weights for each client. Guidance models are obtained by the local one-step ahead adaptation on individual clients. Finally, we conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.

Federated Learning (FL) is a widely embraced paradigm for distilling artificial intelligence from distributed mobile data. However, the deployment of FL in mobile networks can be compromised by exposure to interference from neighboring cells or jammers. Existing interference mitigation techniques require multi-cell cooperation or at least interference channel state information, which is expensive in practice. On the other hand, power control that treats interference as noise may not be effective due to limited power budgets, and also that this mechanism can trigger countermeasures by interference sources. As a practical approach for protecting FL against interference, we propose Spectrum Breathing, which cascades stochastic-gradient pruning and spread spectrum to suppress interference without bandwidth expansion. The cost is higher learning latency by exploiting the graceful degradation of learning speed due to pruning. We synchronize the two operations such that their levels are controlled by the same parameter, Breathing Depth. To optimally control the parameter, we develop a martingale-based approach to convergence analysis of Over-the-Air FL with spectrum breathing, termed AirBreathing FL. We show a performance tradeoff between gradient-pruning and interference-induced error as regulated by the breathing depth. Given receive SIR and model size, the optimization of the tradeoff yields two schemes for controlling the breathing depth that can be either fixed or adaptive to channels and the learning process. As shown by experiments, in scenarios where traditional Over-the-Air FL fails to converge in the presence of strong interference, AirBreahing FL with either fixed or adaptive breathing depth can ensure convergence where the adaptive scheme achieves close-to-ideal performance.

Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

北京阿比特科技有限公司