Automated and robust portrait quality assessment (PQA) is of paramount importance in high-impact applications such as smartphone photography. This paper presents FHIQA, a learning-based approach to PQA that introduces a simple but effective quality score rescaling method based on image semantics, to enhance the precision of fine-grained image quality metrics while ensuring robust generalization to various scene settings beyond the training dataset. The proposed approach is validated by extensive experiments on the PIQ23 benchmark and comparisons with the current state of the art. The source code of FHIQA will be made publicly available on the PIQ23 GitHub repository at //github.com/DXOMARK-Research/PIQ2023.
This paper introduces semantic features as a candidate conceptual framework for building inherently interpretable neural networks. A proof of concept model for informative subproblem of MNIST consists of 4 such layers with the total of 5K learnable parameters. The model is well-motivated, inherently interpretable, requires little hyperparameter tuning and achieves human-level adversarial test accuracy - with no form of adversarial training! These results and the general nature of the approach warrant further research on semantic features. The code is available at //github.com/314-Foundation/white-box-nn
Generative models with discrete latent representations have recently demonstrated an impressive ability to learn complex high-dimensional data distributions. However, their performance relies on a long sequence of tokens per instance and a large number of codebook entries, resulting in long sampling times and considerable computation to fit the categorical posterior. To address these issues, we propose the Masked Vector Quantization (MVQ) framework which increases the representational capacity of each code vector by learning mask configurations via a stochastic winner-takes-all training regime called Multiple Hypothese Dropout (MH-Dropout). On ImageNet 64$\times$64, MVQ reduces FID in existing vector quantization architectures by up to $68\%$ at 2 tokens per instance and $57\%$ at 5 tokens. These improvements widen as codebook entries is reduced and allows for $7\textit{--}45\times$ speed-up in token sampling during inference. As an additional benefit, we find that smaller latent spaces lead to MVQ identifying transferable visual representations where multiple can be smoothly combined.
The emerging data-driven methods based on artificial intelligence (AI) have paved the way for intelligent, flexible, and adaptive network management in vehicular applications. To enhance network management towards network automation, this article presents a digital twin (DT) assisted two-tier learning framework, which facilitates the automated life-cycle management of machine learning based intelligent network management functions (INMFs). Specifically, at a high tier, meta learning is employed to capture different levels of general features for the INMFs under nonstationary network conditions. At a low tier, individual learning models are customized for local networks based on fast model adaptation. Hierarchical DTs are deployed at the edge and cloud servers to assist the two-tier learning process, through closed-loop interactions with the physical network domain. Finally, a case study demonstrates the fast and accurate model adaptation ability of meta learning in comparison with benchmark schemes.
Relational data augmentation is a powerful technique for enhancing data analytics and improving machine learning models by incorporating columns from external datasets. However, it is challenging to efficiently discover relevant external tables to join with a given input table. Existing approaches rely on data discovery systems to identify joinable tables from external sources, typically based on overlap or containment. However, the sheer number of tables obtained from these systems results in irrelevant joins that need to be performed; this can be computationally expensive or even infeasible in practice. We address this limitation by proposing the use of efficient mutual information (MI) estimation for finding relevant joinable tables. We introduce a new sketching method that enables efficient evaluation of relationship discovery queries by estimating MI without materializing the joins and returning a smaller set of tables that are more likely to be relevant. We also demonstrate the effectiveness of our approach at approximating MI in extensive experiments using synthetic and real-world datasets.
In systems modelling, a system typically comprises located resources relative to which processes execute. One important use of logic in informatics is in modelling such systems for the purpose of reasoning (perhaps automated) about their behaviour and properties. To this end, one requires an interpretation of logical formulae in terms of the resources and states of the system; such an interpretation is called a resource semantics of the logic. This paper shows how inferentialism -- the view that meaning is given in terms of inferential behaviour -- enables a versatile and expressive framework for resource semantics. Specifically, how inferentialism seamlessly incorporates the assertion-based approach of the logic of Bunched Implications, foundational in program verification (e.g., as the basis of Separation Logic), and the renowned number-of-uses reading of Linear Logic. This integration enables reasoning about shared and separated resources in intuitive and familiar ways, as well as about the composition and interfacing of system components.
Spiking neural networks (SNNs) offer an energy-efficient alternative to conventional deep learning by mimicking the event-driven processing of the brain. Incorporating the Transformers with SNNs has shown promise for accuracy, yet it is incompetent to capture high-frequency patterns like moving edge and pixel-level brightness changes due to their reliance on global self-attention operations. Porting frequency representations in SNN is challenging yet crucial for event-driven vision. To address this issue, we propose the Spiking Wavelet Transformer (SWformer), an attention-free architecture that effectively learns comprehensive spatial-frequency features in a spike-driven manner by leveraging the sparse wavelet transform. The critical component is a Frequency-Aware Token Mixer (FATM) with three branches: 1) spiking wavelet learner for spatial-frequency domain learning, 2) convolution-based learner for spatial feature extraction, and 3) spiking pointwise convolution for cross-channel information aggregation. We also adopt negative spike dynamics to strengthen the frequency representation further. This enables the SWformer to outperform vanilla Spiking Transformers in capturing high-frequency visual components, as evidenced by our empirical results. Experiments on both static and neuromorphic datasets demonstrate SWformer's effectiveness in capturing spatial-frequency patterns in a multiplication-free, event-driven fashion, outperforming state-of-the-art SNNs. SWformer achieves an over 50% reduction in energy consumption, a 21.1% reduction in parameter count, and a 2.40% performance improvement on the ImageNet dataset compared to vanilla Spiking Transformers.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.