亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Near-term quantum computers are expected to work in an environment where each operation is noisy, with no error correction. Therefore, quantum-circuit optimizers are applied to minimize the number of noisy operations. Today, physicists are constantly experimenting with novel devices and architectures. For every new physical substrate and for every modification of a quantum computer, we need to modify or rewrite major pieces of the optimizer to run successful experiments. In this paper, we present QUESO, an efficient approach for automatically synthesizing a quantum-circuit optimizer for a given quantum device. For instance, in 1.2 minutes, QUESO can synthesize an optimizer with high-probability correctness guarantees for IBM computers that significantly outperforms leading compilers, such as IBM's Qiskit and TKET, on the majority (85%) of the circuits in a diverse benchmark suite. A number of theoretical and algorithmic insights underlie QUESO: (1) An algebraic approach for representing rewrite rules and their semantics. This facilitates reasoning about complex symbolic rewrite rules that are beyond the scope of existing techniques. (2) A fast approach for probabilistically verifying equivalence of quantum circuits by reducing the problem to a special form of polynomial identity testing. (3) A novel probabilistic data structure, called a polynomial identity filter (PIF), for efficiently synthesizing rewrite rules. (4) A beam-search-based algorithm that efficiently applies the synthesized symbolic rewrite rules to optimize quantum circuits.

相關內容

We present Pix2Repair, an automated shape repair approach that generates restoration shapes from images to repair fractured objects. Prior repair approaches require a high-resolution watertight 3D mesh of the fractured object as input. Input 3D meshes must be obtained using expensive 3D scanners, and scanned meshes require manual cleanup, limiting accessibility and scalability. Pix2Repair takes an image of the fractured object as input and automatically generates a 3D printable restoration shape. We contribute a novel shape function that deconstructs a latent code representing the fractured object into a complete shape and a break surface. We show restorations for synthetic fractures from the Geometric Breaks and Breaking Bad datasets, and cultural heritage objects from the QP dataset, and for real fractures from the Fantastic Breaks dataset. We overcome challenges in restoring axially symmetric objects by predicting view-centered restorations. Our approach outperforms shape completion approaches adapted for shape repair in terms of chamfer distance, earth mover's distance, normal consistency, and percent restorations generated.

This paper marries two state-of-the-art controller synthesis methods for partially observable Markov decision processes (POMDPs), a prominent model in sequential decision making under uncertainty. A central issue is to find a POMDP controller - that solely decides based on the observations seen so far - to achieve a total expected reward objective. As finding optimal controllers is undecidable, we concentrate on synthesising good finite-state controllers (FSCs). We do so by tightly integrating two modern, orthogonal methods for POMDP controller synthesis: a belief-based and an inductive approach. The former method obtains an FSC from a finite fragment of the so-called belief MDP, an MDP that keeps track of the probabilities of equally observable POMDP states. The latter is an inductive search technique over a set of FSCs, e.g., controllers with a fixed memory size. The key result of this paper is a symbiotic anytime algorithm that tightly integrates both approaches such that each profits from the controllers constructed by the other. Experimental results indicate a substantial improvement in the value of the controllers while significantly reducing the synthesis time and memory footprint.

Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class NP, referred to as stateQMA, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class stateQIP recently introduced by Rosenthal and Yuen (ITCS 2022), which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or a bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits (stateBQP) and space-uniform polynomial-space quantum circuits (statePSPACE). Additionally, we demonstrate that stateQCMA is closed under perfect completeness. Our proof techniques are based on the quantum singular value transformation introduced by Gily\'en, Su, Low, and Wiebe (STOC 2019), and its adaption to achieve exponential precision with a bounded space.

The complexity class Quantum Statistical Zero-Knowledge ($\mathsf{QSZK}$) captures computational difficulties of quantum state testing with respect to the trace distance for efficiently preparable mixed states (Quantum State Distinguishability Problem, QSDP), as introduced by Watrous (FOCS 2002). However, this class faces the same parameter issue as its classical counterpart, because of error reduction for the QSDP (the polarization lemma), as demonstrated by Sahai and Vadhan (JACM, 2003). In this paper, we introduce quantum analogues of triangular discrimination, which is a symmetric version of the $\chi^2$ divergence, and investigate the quantum state testing problems for quantum triangular discrimination and quantum Jensen-Shannon divergence (a symmetric version of the quantum relative entropy). These new $\mathsf{QSZK}$-complete problems allow us to improve the parameter regime for testing quantum states in trace distance and examine the limitations of existing approaches to polarization. Additionally, we prove that the quantum state testing for trace distance with negligible errors is in $\mathsf{PP}$ while the same problem without error is in $\mathsf{BQP}_1$. This result suggests that achieving length-preserving polarization for QSDP seems implausible unless $\mathsf{QSZK}$ is in $\mathsf{PP}$.

Logic synthesis is the first and most vital step in chip design. This steps converts a chip specification written in a hardware description language (such as Verilog) into an optimized implementation using Boolean logic gates. State-of-the-art logic synthesis algorithms have a large number of logic minimization heuristics, typically applied sequentially based on human experience and intuition. The choice of the order greatly impacts the quality (e.g., area and delay) of the synthesized circuit. In this paper, we propose INVICTUS, a model-based offline reinforcement learning (RL) solution that automatically generates a sequence of logic minimization heuristics ("synthesis recipe") based on a training dataset of previously seen designs. A key challenge is that new designs can range from being very similar to past designs (e.g., adders and multipliers) to being completely novel (e.g., new processor instructions). %Compared to prior work, INVICTUS is the first solution that uses a mix of RL and search methods joint with an online out-of-distribution detector to generate synthesis recipes over a wide range of benchmarks. Our results demonstrate significant improvement in area-delay product (ADP) of synthesized circuits with up to 30\% improvement over state-of-the-art techniques. Moreover, INVICTUS achieves up to $6.3\times$ runtime reduction (iso-ADP) compared to the state-of-the-art.

Circuit representation learning aims to obtain neural representations of circuit elements and has emerged as a promising research direction that can be applied to various EDA and logic reasoning tasks. Existing solutions, such as DeepGate, have the potential to embed both circuit structural information and functional behavior. However, their capabilities are limited due to weak supervision or flawed model design, resulting in unsatisfactory performance in downstream tasks. In this paper, we introduce DeepGate2, a novel functionality-aware learning framework that significantly improves upon the original DeepGate solution in terms of both learning effectiveness and efficiency. Our approach involves using pairwise truth table differences between sampled logic gates as training supervision, along with a well-designed and scalable loss function that explicitly considers circuit functionality. Additionally, we consider inherent circuit characteristics and design an efficient one-round graph neural network (GNN), resulting in an order of magnitude faster learning speed than the original DeepGate solution. Experimental results demonstrate significant improvements in two practical downstream tasks: logic synthesis and Boolean satisfiability solving. The code is available at //github.com/cure-lab/DeepGate2

An Eulerian circuit in a directed graph is one of the most fundamental Graph Theory notions. Detecting if a graph $G$ has a unique Eulerian circuit can be done in polynomial time via the BEST theorem by de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte, 1941-1951 (involving counting arborescences), or via a tailored characterization by Pevzner, 1989 (involving computing the intersection graph of simple cycles of $G$), both of which thus rely on overly complex notions for the simpler uniqueness problem. In this paper we give a new linear-time checkable characterization of directed graphs with a unique Eulerian circuit. This is based on a simple condition of when two edges must appear consecutively in all Eulerian circuits, in terms of cut nodes of the underlying undirected graph of $G$. As a by-product, we can also compute in linear-time all maximal $\textit{safe}$ walks appearing in all Eulerian circuits, for which Nagarajan and Pop proposed in 2009 a polynomial-time algorithm based on Pevzner characterization.

DPPs were introduced by Macchi as a model in quantum optics the 1970s. Since then, they have been widely used as models and subsampling tools in statistics and computer science. Most applications require sampling from a DPP, and given their quantum origin, it is natural to wonder whether sampling a DPP on a quantum computer is easier than on a classical one. We focus here on DPPs over a finite state space, which are distributions over the subsets of $\{1,\dots,N\}$ parametrized by an $N\times N$ Hermitian kernel matrix. Vanilla sampling consists in two steps, of respective costs $\mathcal{O}(N^3)$ and $\mathcal{O}(Nr^2)$ operations on a classical computer, where $r$ is the rank of the kernel matrix. A large first part of the current paper consists in explaining why the state-of-the-art in quantum simulation of fermionic systems already yields quantum DPP sampling algorithms. We then modify existing quantum circuits, and discuss their insertion in a full DPP sampling pipeline that starts from practical kernel specifications. The bottom line is that, with $P$ (classical) parallel processors, we can divide the preprocessing cost by $P$ and build a quantum circuit with $\mathcal{O}(Nr)$ gates that sample a given DPP, with depth varying from $\mathcal{O}(N)$ to $\mathcal{O}(r\log N)$ depending on qubit-communication constraints on the target machine. We also connect existing work on the simulation of superconductors to Pfaffian point processes, which generalize DPPs and would be a natural addition to the machine learner's toolbox. Finally, the circuits are empirically validated on a classical simulator and on 5-qubit machines.

The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.

北京阿比特科技有限公司