Large Foundational Language Models are capable of performing many tasks at a high level but are difficult to deploy in many applications because of their size and proprietary ownership. Many will be motivated to distill specific capabilities of foundational models into smaller models that can be owned and controlled. In the development of a therapeutic chatbot, we wish to distill a capability known as reflective listening, in which a therapist produces reflections of client speech. These reflections either restate what a client has said, or connect what was said to a relevant observation, idea or guess that encourages and guides the client to continue contemplation. In this paper, we present a method for distilling the generation of reflections from a Foundational Language Model (GPT-4) into smaller models. We first show that GPT-4, using zero-shot prompting, can generate reflections at near 100% success rate, superior to all previous methods. Using reflections generated by GPT-4, we fine-tune different sizes of the GPT-2 family. The GPT-2-small model achieves 83% success on a hold-out test set and the GPT-2 XL achieves 90% success. We also show that GPT-4 can help in the labor-intensive task of evaluating the quality of the distilled models, using it as a zero-shot classifier. Using triple-human review as a guide, the classifier achieves a Cohen-Kappa of 0.66, a substantial inter-rater reliability figure.
Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/Mipha.
Large Language Models (LLMs) are demonstrating outstanding potential for tasks such as text generation, summarization, and classification. Given that such models are trained on a humongous amount of online knowledge, we hypothesize that LLMs can assess whether driving scenarios generated by autonomous driving testing techniques are realistic, i.e., being aligned with real-world driving conditions. To test this hypothesis, we conducted an empirical evaluation to assess whether LLMs are effective and robust in performing the task. This reality check is an important step towards devising LLM-based autonomous driving testing techniques. For our empirical evaluation, we selected 64 realistic scenarios from \deepscenario--an open driving scenario dataset. Next, by introducing minor changes to them, we created 512 additional realistic scenarios, to form an overall dataset of 576 scenarios. With this dataset, we evaluated three LLMs (\gpt, \llama, and \mistral) to assess their robustness in assessing the realism of driving scenarios. Our results show that: (1) Overall, \gpt achieved the highest robustness compared to \llama and \mistral, consistently throughout almost all scenarios, roads, and weather conditions; (2) \mistral performed the worst consistently; (3) \llama achieved good results under certain conditions; and (4) roads and weather conditions do influence the robustness of the LLMs.
The Internet of Medical Things (IoMT) transcends traditional medical boundaries, enabling a transition from reactive treatment to proactive prevention. This innovative method revolutionizes healthcare by facilitating early disease detection and tailored care, particularly in chronic disease management, where IoMT automates treatments based on real-time health data collection. Nonetheless, its benefits are countered by significant security challenges that endanger the lives of its users due to the sensitivity and value of the processed data, thereby attracting malicious interests. Moreover, the utilization of wireless communication for data transmission exposes medical data to interception and tampering by cybercriminals. Additionally, anomalies may arise due to human errors, network interference, or hardware malfunctions. In this context, anomaly detection based on Machine Learning (ML) is an interesting solution, but it comes up against obstacles in terms of explicability and protection of privacy. To address these challenges, a new framework for Intrusion Detection Systems (IDS) is introduced, leveraging Artificial Neural Networks (ANN) for intrusion detection while utilizing Federated Learning (FL) for privacy preservation. Additionally, eXplainable Artificial Intelligence (XAI) methods are incorporated to enhance model explanation and interpretation. The efficacy of the proposed framework is evaluated and compared with centralized approaches using multiple datasets containing network and medical data, simulating various attack types impacting the confidentiality, integrity, and availability of medical and physiological data. The results obtained offer compelling evidence that the FL method performs comparably to the centralized method, demonstrating high performance. Additionally, it affords the dual advantage of safeguarding privacy and providing model explanation.
To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at //moma-llm.cs.uni-freiburg.de.
Deep Neural Networks (DNNs) do not inherently compute or exhibit empirically-justified task confidence. In mission critical applications, it is important to both understand associated DNN reasoning and its supporting evidence. In this paper, we propose a novel Bayesian approach to extract explanations, justifications, and uncertainty estimates from DNNs. Our approach is efficient both in terms of memory and computation, and can be applied to any black box DNN without any retraining, including applications to anomaly detection and out-of-distribution detection tasks. We validate our approach on the CIFAR-10 dataset, and show that it can significantly improve the interpretability and reliability of DNNs.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github.com/sail-sg/lm-random-memory-access.
While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.
Large Language Models (LLMs) have advanced automated writing assistance, enabling complex tasks like co-writing novels and poems. However, real-world writing typically requires various support and collaboration across stages and scenarios. Existing research mainly examines how writers utilize single text generators, neglecting this broader context. This paper introduces Inspo, a web-based editor that incorporates various text generators and online crowd workers. Through a three-phase user study, we examine writers' interactions with Inspo for novel writing. Quantitative analyses of writing logs highlight changes in participants' writing progress and the influence of various text-generation models. Complementing this with qualitative insights from semi-structured interviews, we illustrate participants' perceptions of these models and the crowd. Based on the findings, we provide design recommendations for the next generation of intelligent writing tools and discuss the potential sociocultural implications of integrating AI and human input in the writing process.
Various factors influence the degree of cybersickness a user can suffer in an immersive virtual environment, some of which can be controlled without adapting the virtual environment itself. When using HMDs, one example is the size of the field of view. However, the degree to which factors like this can be manipulated without affecting the user negatively in other ways is limited. Another prominent characteristic of cybersickness is that it affects individuals very differently. Therefore, to account for both the possible disruptive nature of alleviating factors and the high interpersonal variance, a promising approach may be to intervene only in cases where users experience discomfort symptoms, and only as much as necessary. Thus, we conducted a first experiment, where the field of view was decreased when people feel uncomfortable, to evaluate the possible positive impact on sickness and negative influence on presence. While we found no significant evidence for any of these possible effects, interesting further results and observations were made.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.