亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various factors influence the degree of cybersickness a user can suffer in an immersive virtual environment, some of which can be controlled without adapting the virtual environment itself. When using HMDs, one example is the size of the field of view. However, the degree to which factors like this can be manipulated without affecting the user negatively in other ways is limited. Another prominent characteristic of cybersickness is that it affects individuals very differently. Therefore, to account for both the possible disruptive nature of alleviating factors and the high interpersonal variance, a promising approach may be to intervene only in cases where users experience discomfort symptoms, and only as much as necessary. Thus, we conducted a first experiment, where the field of view was decreased when people feel uncomfortable, to evaluate the possible positive impact on sickness and negative influence on presence. While we found no significant evidence for any of these possible effects, interesting further results and observations were made.

相關內容

Automated driving systems require monitoring mechanisms to ensure safe operation, especially if system components degrade or fail. Their runtime self-representation plays a key role as it provides a-priori knowledge about the system's capabilities and limitations. In this paper, we propose a data-driven approach for deriving such a self-representation model for the motion controller of an automated vehicle. A conformalized prediction model is learned and allows estimating how operational conditions as well as potential degradations and failures of the vehicle's actuators impact motion control performance. During runtime behavior generation, our predictor can provide a heuristic for determining the admissible action space.

We consider a communication system consisting of a server that tracks and publishes updates about a time-varying data source or event, and a gossip network of users interested in closely tracking the event. The timeliness of the information is measured through the version age of information. The users wish to have their expected version ages remain below a threshold, and have the option to either rely on gossip from their neighbors or subscribe to the server directly to follow updates about the event if the former option does not meet the timeliness requirements. The server wishes to maximize its profit by increasing the number of subscribers and reducing costs associated with the frequent sampling of the event. We model the problem setup as a Stackelberg game between the server and the users, where the server commits to a frequency of sampling the event, and the users make decisions on whether to subscribe or not. As an initial work, we focus on directed networks with unidirectional flow of information and obtain the optimal equilibrium strategies for all the players. We provide simulation results to confirm the theoretical findings and provide additional insights.

Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users' understanding (Slack et al., 2023; Shen et al., 2023), as one-off explanations may fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for. With LLMCheckup, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate explanations and perform user intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) methods, including white-box explainability tools such as feature attributions, and self-explanations (e.g., for rationale generation). LLM-based (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. LLMCheckupprovides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supporting multiple input modalities. We introduce a new parsing strategy that substantially enhances the user intent recognition accuracy of the LLM. Finally, we showcase LLMCheckup for the tasks of fact checking and commonsense question answering.

Customizing persuasive conversations related to the outcome of interest for specific users achieves better persuasion results. However, existing persuasive conversation systems rely on persuasive strategies and encounter challenges in dynamically adjusting dialogues to suit the evolving states of individual users during interactions. This limitation restricts the system's ability to deliver flexible or dynamic conversations and achieve suboptimal persuasion outcomes. In this paper, we present a novel approach that tracks a user's latent personality dimensions (LPDs) during ongoing persuasion conversation and generates tailored counterfactual utterances based on these LPDs to optimize the overall persuasion outcome. In particular, our proposed method leverages a Bi-directional Generative Adversarial Network (BiCoGAN) in tandem with a Dialogue-based Personality Prediction Regression (DPPR) model to generate counterfactual data. This enables the system to formulate alternative persuasive utterances that are more suited to the user. Subsequently, we utilize the D3QN model to learn policies for optimized selection of system utterances on counterfactual data. Experimental results we obtained from using the PersuasionForGood dataset demonstrate the superiority of our approach over the existing method, BiCoGAN. The cumulative rewards and Q-values produced by our method surpass ground truth benchmarks, showcasing the efficacy of employing counterfactual reasoning and LPDs to optimize reinforcement learning policy in online interactions.

Session-based recommendation aims to predict intents of anonymous users based on their limited behaviors. Modeling user behaviors involves two distinct rationales: co-occurrence patterns reflected by item IDs, and fine-grained preferences represented by item modalities (e.g., text and images). However, existing methods typically entangle these causes, leading to their failure in achieving accurate and explainable recommendations. To this end, we propose a novel framework DIMO to disentangle the effects of ID and modality in the task. At the item level, we introduce a co-occurrence representation schema to explicitly incorporate cooccurrence patterns into ID representations. Simultaneously, DIMO aligns different modalities into a unified semantic space to represent them uniformly. At the session level, we present a multi-view self-supervised disentanglement, including proxy mechanism and counterfactual inference, to disentangle ID and modality effects without supervised signals. Leveraging these disentangled causes, DIMO provides recommendations via causal inference and further creates two templates for generating explanations. Extensive experiments on multiple real-world datasets demonstrate the consistent superiority of DIMO over existing methods. Further analysis also confirms DIMO's effectiveness in generating explanations.

Attention-based sequential recommendation methods have shown promise in accurately capturing users' evolving interests from their past interactions. Recent research has also explored the integration of reinforcement learning (RL) into these models, in addition to generating superior user representations. By framing sequential recommendation as an RL problem with reward signals, we can develop recommender systems that incorporate direct user feedback in the form of rewards, enhancing personalization for users. Nonetheless, employing RL algorithms presents challenges, including off-policy training, expansive combinatorial action spaces, and the scarcity of datasets with sufficient reward signals. Contemporary approaches have attempted to combine RL and sequential modeling, incorporating contrastive-based objectives and negative sampling strategies for training the RL component. In this work, we further emphasize the efficacy of contrastive-based objectives paired with augmentation to address datasets with extended horizons. Additionally, we recognize the potential instability issues that may arise during the application of negative sampling. These challenges primarily stem from the data imbalance prevalent in real-world datasets, which is a common issue in offline RL contexts. Furthermore, we introduce an enhanced methodology aimed at providing a more effective solution to these challenges. Experimental results across several real datasets show our method with increased robustness and state-of-the-art performance.

Problem definition. In retailing, discrete choice models (DCMs) are commonly used to capture the choice behavior of customers when offered an assortment of products. When estimating DCMs using transaction data, flexible models (such as machine learning models or nonparametric models) are typically not interpretable and hard to estimate, while tractable models (such as the multinomial logit model) tend to misspecify the complex behavior represeted in the data. Methodology/results. In this study, we use a forest of binary decision trees to represent DCMs. This approach is based on random forests, a popular machine learning algorithm. The resulting model is interpretable: the decision trees can explain the decision-making process of customers during the purchase. We show that our approach can predict the choice probability of any DCM consistently and thus never suffers from misspecification. Moreover, our algorithm predicts assortments unseen in the training data. The mechanism and errors can be theoretically analyzed. We also prove that the random forest can recover preference rankings of customers thanks to the splitting criterion such as the Gini index and information gain ratio. Managerial implications. The framework has unique practical advantages. It can capture customers' behavioral patterns such as irrationality or sequential searches when purchasing a product. It handles nonstandard formats of training data that result from aggregation. It can measure product importance based on how frequently a random customer would make decisions depending on the presence of the product. It can also incorporate price information and customer features. Our numerical experiments using synthetic and real data show that using random forests to estimate customer choices can outperform existing methods.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司