亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Session-based recommendation aims to predict intents of anonymous users based on their limited behaviors. Modeling user behaviors involves two distinct rationales: co-occurrence patterns reflected by item IDs, and fine-grained preferences represented by item modalities (e.g., text and images). However, existing methods typically entangle these causes, leading to their failure in achieving accurate and explainable recommendations. To this end, we propose a novel framework DIMO to disentangle the effects of ID and modality in the task. At the item level, we introduce a co-occurrence representation schema to explicitly incorporate cooccurrence patterns into ID representations. Simultaneously, DIMO aligns different modalities into a unified semantic space to represent them uniformly. At the session level, we present a multi-view self-supervised disentanglement, including proxy mechanism and counterfactual inference, to disentangle ID and modality effects without supervised signals. Leveraging these disentangled causes, DIMO provides recommendations via causal inference and further creates two templates for generating explanations. Extensive experiments on multiple real-world datasets demonstrate the consistent superiority of DIMO over existing methods. Further analysis also confirms DIMO's effectiveness in generating explanations.

相關內容

Semantic relevance calculation is crucial for e-commerce search engines, as it ensures that the items selected closely align with customer intent. Inadequate attention to this aspect can detrimentally affect user experience and engagement. Traditional text-matching techniques are prevalent but often fail to capture the nuances of search intent accurately, so neural networks now have become a preferred solution to processing such complex text matching. Existing methods predominantly employ representation-based architectures, which strike a balance between high traffic capacity and low latency. However, they exhibit significant shortcomings in generalization and robustness when compared to interaction-based architectures. In this work, we introduce a robust interaction-based modeling paradigm to address these shortcomings. It encompasses 1) a dynamic length representation scheme for expedited inference, 2) a professional terms recognition method to identify subjects and core attributes from complex sentence structures, and 3) a contrastive adversarial training protocol to bolster the model's robustness and matching capabilities. Extensive offline evaluations demonstrate the superior robustness and effectiveness of our approach, and online A/B testing confirms its ability to improve relevance in the same exposure position, resulting in more clicks and conversions. To the best of our knowledge, this method is the first interaction-based approach for large e-commerce search relevance calculation. Notably, we have deployed it for the entire search traffic on alibaba.com, the largest B2B e-commerce platform in the world.

Cross-domain sequential recommendation (CDSR) aims to uncover and transfer users' sequential preferences across multiple recommendation domains. While significant endeavors have been made, they primarily concentrated on developing advanced transfer modules and aligning user representations using self-supervised learning techniques. However, the problem of aligning item representations has received limited attention, and misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment. To this end, we propose a model-agnostic framework called \textbf{C}ross-domain item representation \textbf{A}lignment for \textbf{C}ross-\textbf{D}omain \textbf{S}equential \textbf{R}ecommendation (\textbf{CA-CDSR}), which achieves sequence-aware generation and adaptively partial alignment for item representations. Specifically, we first develop a sequence-aware feature augmentation strategy, which captures both collaborative and sequential item correlations, thus facilitating holistic item representation generation. Next, we conduct an empirical study to investigate the partial representation alignment problem from a spectrum perspective. It motivates us to devise an adaptive spectrum filter, achieving partial alignment adaptively. Furthermore, the aligned item representations can be fed into different sequential encoders to obtain user representations. The entire framework is optimized in a multi-task learning paradigm with an annealing strategy. Extensive experiments have demonstrated that CA-CDSR can surpass state-of-the-art baselines by a significant margin and can effectively align items in representation spaces to enhance performance.

We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.

Detecting out-of-scope user utterances is essential for task-oriented dialogues and intent classification. Current methodologies face difficulties with the unpredictable distribution of outliers and often rely on assumptions about data distributions. We present the Dual Encoder for Threshold-Based Re-Classification (DETER) to address these challenges. This end-to-end framework efficiently detects out-of-scope intents without requiring assumptions on data distributions or additional post-processing steps. The core of DETER utilizes dual text encoders, the Universal Sentence Encoder (USE) and the Transformer-based Denoising AutoEncoder (TSDAE), to generate user utterance embeddings, which are classified through a branched neural architecture. Further, DETER generates synthetic outliers using self-supervision and incorporates out-of-scope phrases from open-domain datasets. This approach ensures a comprehensive training set for out-of-scope detection. Additionally, a threshold-based re-classification mechanism refines the model's initial predictions. Evaluations on the CLINC-150, Stackoverflow, and Banking77 datasets demonstrate DETER's efficacy. Our model outperforms previous benchmarks, increasing up to 13% and 5% in F1 score for known and unknown intents on CLINC-150 and Stackoverflow, and 16% for known and 24% % for unknown intents on Banking77. The source code has been released at //github.com/Hossam-Mohammed-tech/Intent_Classification_OOS.

Sequential recommendation systems (SRS) serve the purpose of predicting users' subsequent preferences based on their past interactions and have been applied across various domains such as e-commerce and social networking platforms. However, practical SRS encounters challenges due to the fact that most users engage with only a limited number of items, while the majority of items are seldom consumed. These challenges, termed as the long-tail user and long-tail item dilemmas, often create obstacles for traditional SRS methods. Mitigating these challenges is crucial as they can significantly impact user satisfaction and business profitability. While some research endeavors have alleviated these issues, they still grapple with issues such as seesaw or noise stemming from the scarcity of interactions. The emergence of large language models (LLMs) presents a promising avenue to address these challenges from a semantic standpoint. In this study, we introduce the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR), which leverages semantic embeddings from LLMs to enhance SRS performance without increasing computational overhead. To combat the long-tail item challenge, we propose a dual-view modeling approach that fuses semantic information from LLMs with collaborative signals from traditional SRS. To address the long-tail user challenge, we introduce a retrieval augmented self-distillation technique to refine user preference representations by incorporating richer interaction data from similar users. Through comprehensive experiments conducted on three authentic datasets using three widely used SRS models, our proposed enhancement framework demonstrates superior performance compared to existing methodologies.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司