亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning-based change detection using remote sensing images has received increasing attention in recent years. However, how to effectively extract and fuse the deep features of bi-temporal images to improve the accuracy of change detection is still a challenge. To address that, a novel adjacent-level feature fusion network with 3D convolution (named AFCF3D-Net) is proposed in this article. First, through the inner fusion property of 3D convolution, we design a new feature fusion way that can simultaneously extract and fuse the feature information from bi-temporal images. Then, in order to bridge the semantic gap between low-level features and high-level features, we propose an adjacent-level feature cross-fusion (AFCF) module to aggregate complementary feature information between the adjacent-levels. Furthermore, the densely skip connection strategy is introduced to improve the capability of pixel-wise prediction and compactness of changed objects in the results. Finally, the proposed AFCF3D-Net has been validated on the three challenging remote sensing change detection datasets: Wuhan building dataset (WHU-CD), LEVIR building dataset (LEVIR-CD), and Sun Yat-Sen University (SYSU-CD). The results of quantitative analysis and qualitative comparison demonstrate that the proposed AFCF3D-Net achieves better performance compared to the other state-of-the-art change detection methods.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 自編碼器 · 超分 · 3D · U-Net ·
2023 年 3 月 31 日

Featured by a bottleneck structure, autoencoder (AE) and its variants have been largely applied in various medical image analysis tasks, such as segmentation, reconstruction and de-noising. Despite of their promising performances in aforementioned tasks, in this paper, we claim that AE models are not applicable to single image super-resolution (SISR) for 3D CT data. Our hypothesis is that the bottleneck architecture that resizes feature maps in AE models degrades the details of input images, thus can sabotage the performance of super-resolution. Although U-Net proposed skip connections that merge information from different levels, we claim that the degrading impact of feature resizing operations could hardly be removed by skip connections. By conducting large-scale ablation experiments and comparing the performance between models with and without the bottleneck design on a public CT lung dataset , we have discovered that AE models, including U-Net, have failed to achieve a compatible SISR result ($p<0.05$ by Student's t-test) compared to the baseline model. Our work is the first comparative study investigating the suitability of AE architecture for 3D CT SISR tasks and brings a rationale for researchers to re-think the choice of model architectures especially for 3D CT SISR tasks. The full implementation and trained models can be found at: //github.com/Roldbach/Autoencoder-3D-CT-SISR

Online Social Network (OSN) has become a hotbed of fake news due to the low cost of information dissemination. Although the existing methods have made many attempts in news content and propagation structure, the detection of fake news is still facing two challenges: one is how to mine the unique key features and evolution patterns, and the other is how to tackle the problem of small samples to build the high-performance model. Different from popular methods which take full advantage of the propagation topology structure, in this paper, we propose a novel framework for fake news detection from perspectives of semantic, emotion and data enhancement, which excavates the emotional evolution patterns of news participants during the propagation process, and a dual deep interaction channel network of semantic and emotion is designed to obtain a more comprehensive and fine-grained news representation with the consideration of comments. Meanwhile, the framework introduces a data enhancement module to obtain more labeled data with high quality based on confidence which further improves the performance of the classification model. Experiments show that the proposed approach outperforms the state-of-the-art methods.

Change detection in remote sensing imagery is essential for a variety of applications such as urban planning, disaster management, and climate research. However, existing methods for identifying semantically changed areas overlook the availability of semantic information in the form of existing maps describing features of the earth's surface. In this paper, we leverage this information for change detection in bi-temporal images. We show that the simple integration of the additional information via concatenation of latent representations suffices to significantly outperform state-of-the-art change detection methods. Motivated by this observation, we propose the new task of Conditional Change Detection, where pre-change semantic information is used as input next to bi-temporal images. To fully exploit the extra information, we propose MapFormer, a novel architecture based on a multi-modal feature fusion module that allows for feature processing conditioned on the available semantic information. We further employ a supervised, cross-modal contrastive loss to guide the learning of visual representations. Our approach outperforms existing change detection methods by an absolute 11.7% and 18.4% in terms of binary change IoU on DynamicEarthNet and HRSCD, respectively. Furthermore, we demonstrate the robustness of our approach to the quality of the pre-change semantic information and the absence pre-change imagery. The code will be made publicly available.

Satellite-based Synthetic Aperture Radar (SAR) images can be used as a source of remote sensed imagery regardless of cloud cover and day-night cycle. However, the speckle noise and varying image acquisition conditions pose a challenge for change detection classifiers. This paper proposes a new method of improving SAR image processing to produce higher quality difference images for the classification algorithms. The method is built on a neural network-based mapping transformation function that produces artificial SAR images from a location in the requested acquisition conditions. The inputs for the model are: previous SAR images from the location, imaging angle information from the SAR images, digital elevation model, and weather conditions. The method was tested with data from a location in North-East Finland by using Sentinel-1 SAR images from European Space Agency, weather data from Finnish Meteorological Institute, and a digital elevation model from National Land Survey of Finland. In order to verify the method, changes to the SAR images were simulated, and the performance of the proposed method was measured using experimentation where it gave substantial improvements to performance when compared to a more conventional method of creating difference images.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司