This paper studies distribution-free inference in settings where the data set has a hierarchical structure -- for example, groups of observations, or repeated measurements. In such settings, standard notions of exchangeability may not hold. To address this challenge, a hierarchical form of exchangeability is derived, facilitating extensions of distribution-free methods, including conformal prediction and jackknife+. While the standard theoretical guarantee obtained by the conformal prediction framework is a marginal predictive coverage guarantee, in the special case of independent repeated measurements, it is possible to achieve a stronger form of coverage -- the "second-moment coverage" property -- to provide better control of conditional miscoverage rates, and distribution-free prediction sets that achieve this property are constructed. Simulations illustrate that this guarantee indeed leads to uniformly small conditional miscoverage rates. Empirically, this stronger guarantee comes at the cost of a larger width of the prediction set in scenarios where the fitted model is poorly calibrated, but this cost is very mild in cases where the fitted model is accurate.
We present Surjective Sequential Neural Likelihood (SSNL) estimation, a novel method for simulation-based inference in models where the evaluation of the likelihood function is not tractable and only a simulator that can generate synthetic data is available. SSNL fits a dimensionality-reducing surjective normalizing flow model and uses it as a surrogate likelihood function which allows for conventional Bayesian inference using either Markov chain Monte Carlo methods or variational inference. By embedding the data in a low-dimensional space, SSNL solves several issues previous likelihood-based methods had when applied to high-dimensional data sets that, for instance, contain non-informative data dimensions or lie along a lower-dimensional manifold. We evaluate SSNL on a wide variety of experiments and show that it generally outperforms contemporary methods used in simulation-based inference, for instance, on a challenging real-world example from astrophysics which models the magnetic field strength of the sun using a solar dynamo model.
Multivariate histograms are difficult to construct due to the curse of dimensionality. Motivated by $k$-d trees in computer science, we show how to construct an efficient data-adaptive partition of Euclidean space that possesses the following two properties: With high confidence the distribution from which the data are generated is close to uniform on each rectangle of the partition; and despite the data-dependent construction we can give guaranteed finite sample simultaneous confidence intervals for the probabilities (and hence for the average densities) of each rectangle in the partition. This partition will automatically adapt to the sizes of the regions where the distribution is close to uniform. The methodology produces confidence intervals whose widths depend only on the probability content of the rectangles and not on the dimensionality of the space, thus avoiding the curse of dimensionality. Moreover, the widths essentially match the optimal widths in the univariate setting. The simultaneous validity of the confidence intervals allows to use this construction, which we call {\sl Beta-trees}, for various data-analytic purposes. We illustrate this by using Beta-trees for visualizing data and for multivariate mode-hunting.
We propose a many-sorted modal logic for reasoning about knowledge in multi-agent systems. Our logic introduces a clear distinction between participating agents and the environment. This allows to express local properties of agents and global properties of worlds in a uniform way, as well as to talk about the presence or absence of agents in a world. The logic subsumes the standard epistemic logic and is a conservative extension of it. The semantics is given in chromatic hypergraphs, a generalization of chromatic simplicial complexes, which were recently used to model knowledge in distributed systems. We show that the logic is sound and complete with respect to the intended semantics. We also show a further connection of chromatic hypergraphs with neighborhood frames.
Bayesian inference and kernel methods are well established in machine learning. The neural network Gaussian process in particular provides a concept to investigate neural networks in the limit of infinitely wide hidden layers by using kernel and inference methods. Here we build upon this limit and provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks. We systematically compute generalization properties of linear, non-linear, and deep non-linear networks for kernel matrices with heterogeneous entries. In contrast to currently employed spectral methods we derive the generalization properties from the statistical properties of the input, elucidating the interplay of input dimensionality, size of the training data set, and variability of the data. We show that data variability leads to a non-Gaussian action reminiscent of a ($\varphi^3+\varphi^4$)-theory. Using our formalism on a synthetic task and on MNIST we obtain a homogeneous kernel matrix approximation for the learning curve as well as corrections due to data variability which allow the estimation of the generalization properties and exact results for the bounds of the learning curves in the case of infinitely many training data points.
We study self-regulating processes modeling biological transportation networks as presented in \cite{portaro2023}. In particular, we focus on the 1D setting for Dirichlet and Neumann boundary conditions. We prove an existence and uniqueness result under the assumption of positivity of the diffusivity $D$. We explore systematically various scenarios and gain insights into the behavior of $D$ and its impact on the studied system. This involves analyzing the system with a signed measure distribution of sources and sinks. Finally, we perform several numerical tests in which the solution $D$ touches zero, confirming the previous hints of local existence in particular cases.
An open-locating-dominating set of a graph models a detection system for a facility with a possible "intruder" or a multiprocessor network with a possible malfunctioning processor. A "sensor" or "detector" is assumed to be installed at a subset of vertices where it can detect an intruder or a malfunctioning processor in their neighborhood, but not at itself. We consider a fault-tolerant variant of an open-locating-dominating set called an error-correcting open-locating-dominating set, which can correct a false-positive or a false-negative signal from a detector. In particular, we prove the problem of finding a minimum error-correcting open-locating-dominating set in an arbitrary graph is NP-complete. Additionally, we characterize the existence criteria for an error-correcting open-locating-dominating sets for an arbitrary graph. We also consider extremal graphs that require every vertex to be a detector and minimum error-correcting open-locating-dominating sets in infinite grids.
We propose a new concept of codivergence, which quantifies the similarity between two probability measures $P_1, P_2$ relative to a reference probability measure $P_0$. In the neighborhood of the reference measure $P_0$, a codivergence behaves like an inner product between the measures $P_1 - P_0$ and $P_2 - P_0$. Codivergences of covariance-type and correlation-type are introduced and studied with a focus on two specific correlation-type codivergences, the $\chi^2$-codivergence and the Hellinger codivergence. We derive explicit expressions for several common parametric families of probability distributions. For a codivergence, we introduce moreover the divergence matrix as an analogue of the Gram matrix. It is shown that the $\chi^2$-divergence matrix satisfies a data-processing inequality.
Conformal prediction is an assumption-lean approach to generating distribution-free prediction intervals or sets, for nearly arbitrary predictive models, with guaranteed finite-sample coverage. Conformal methods are an active research topic in statistics and machine learning, but only recently have they been extended to non-exchangeable data. In this paper, we invite survey methodologists to begin using and contributing to conformal methods. We introduce how conformal prediction can be applied to data from several common complex sample survey designs, under a framework of design-based inference for a finite population, and we point out gaps where survey methodologists could fruitfully apply their expertise. Our simulations empirically bear out the theoretical guarantees of finite-sample coverage, and our real-data example demonstrates how conformal prediction can be applied to complex sample survey data in practice.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.