亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most NoSQL systems are schema-on-read: data can be stored without first having to declare a Schema that imposes a structure. This schemaless feature offers flexibility to evolve data-intensive applications when data frequently change. However, freeing from declaring schemas does not mean their absence, but rather that they are implicit in data and code. Therefore, diagramming tools similar to those available for relational systems are also needed to help developers and administrators understanding NoSQL schemas. Visualizing diagrams is not practical if schemas contain hundreds of database entities, and exploration or query facilities are then needed. In schemaless NoSQL stores, data of the same entity can be stored with different structure which can increase the difficulty of having readable diagrams. NoSQL schema management tools should therefore have three main components: schema extraction, schema visualization, and schema query. Since that there exist four main NoSQL data models, it is convenient that such tools can be built on a generic data model that provide platform-independence to query and visualize schemas. With the aim of favoring the creation of generic database tools, the authors of this paper defined the U-Schema unified data model that integrates the four main NoSQL data models and the relational model. This paper is focused on querying NoSQL and relational schemas which are represented as U-Schema models. We present the SkiQL language designed on U-Schema to achieve a platform-independent schema query service. SkiQL provides two constructs: schema-query and relationship-query. The former allows to obtain information of entity or relationship types, and the latter that of the aggregations or references (relations among types). We will show how SkiQL was evaluated by calculating well-known metrics for languages and using a survey.

相關內容

 NoSQL 全稱是 Not Only SQL,是一種不同于關系型數據庫的數據庫管理系統設計方式。

Self-Sovereign Identity (SSI) is a new distributed method for identity management, commonly used to address the problem that users are lack of control over their identities. However, the excessive pursuit of self-sovereignty in the most existing SSI schemes hinders sanctions against attackers. To deal with the malicious behavior, a few SSI schemes introduce accountability mechanisms, but they sacrifice users' privacy. What's more, the digital identities (static strings or updatable chains) in the existing SSI schemes are as inputs to a third-party executable program (mobile app, smart contract, etc.) to achieve identity reading, storing and proving, users' self-sovereignty are weakened. To solve the above problems, we present a new self-sovereign identity scheme to strike a balance between privacy and accountability and get rid of the dependence on the third-party program. In our scheme, one and only individual-specific executable code is generated as a digital avatar-i for each human to interact with others in cyberspace without a third-party program, in which the embedding of biometrics enhances uniqueness and user control over their identity. In addition, a joint accountability mechanism, which is based on the shamir (t, n) threshold algorithm and a consortium blockchain, is designed to restrict the power of each regulatory authority and protect users' privacy. Finally, we analyze the security, SSI properties and conduct detailed experiments in term of the cost of computation, storage and blockchain gas. The analysis results indicate that our scheme resists the known attacks and fulfills all the six SSI properties. Compared with the state-of-the-art schemes, the extensive experiment results show that the cost is larger in server storage, blockchain storage and blockchain gas, but is still low enough for practical situations.

Understanding foggy image sequence in the driving scenes is critical for autonomous driving, but it remains a challenging task due to the difficulty in collecting and annotating real-world images of adverse weather. Recently, the self-training strategy has been considered a powerful solution for unsupervised domain adaptation, which iteratively adapts the model from the source domain to the target domain by generating target pseudo labels and re-training the model. However, the selection of confident pseudo labels inevitably suffers from the conflict between sparsity and accuracy, both of which will lead to suboptimal models. To tackle this problem, we exploit the characteristics of the foggy image sequence of driving scenes to densify the confident pseudo labels. Specifically, based on the two discoveries of local spatial similarity and adjacent temporal correspondence of the sequential image data, we propose a novel Target-Domain driven pseudo label Diffusion (TDo-Dif) scheme. It employs superpixels and optical flows to identify the spatial similarity and temporal correspondence, respectively and then diffuses the confident but sparse pseudo labels within a superpixel or a temporal corresponding pair linked by the flow. Moreover, to ensure the feature similarity of the diffused pixels, we introduce local spatial similarity loss and temporal contrastive loss in the model re-training stage. Experimental results show that our TDo-Dif scheme helps the adaptive model achieve 51.92% and 53.84% mean intersection-over-union (mIoU) on two publicly available natural foggy datasets (Foggy Zurich and Foggy Driving), which exceeds the state-of-the-art unsupervised domain adaptive semantic segmentation methods. Models and data can be found at //github.com/velor2012/TDo-Dif.

Semantic 3D scene understanding is a problem of critical importance in robotics. While significant advances have been made in simultaneous localization and mapping algorithms, robots are still far from having the common sense knowledge about household objects and their locations of an average human. We introduce a novel method for leveraging common sense embedded within large language models for labelling rooms given the objects contained within. This algorithm has the added benefits of (i) requiring no task-specific pre-training (operating entirely in the zero-shot regime) and (ii) generalizing to arbitrary room and object labels, including previously-unseen ones -- both of which are highly desirable traits in robotic scene understanding algorithms. The proposed algorithm operates on 3D scene graphs produced by modern spatial perception systems, and we hope it will pave the way to more generalizable and scalable high-level 3D scene understanding for robotics.

The seminal paper by Mazumdar and Saha \cite{MS17a} introduced an extensive line of work on clustering with noisy queries. Yet, despite significant progress on the problem, the proposed methods depend crucially on knowing the exact probabilities of errors of the underlying fully-random oracle. In this work, we develop robust learning methods that tolerate general semi-random noise obtaining qualitatively the same guarantees as the best possible methods in the fully-random model. More specifically, given a set of $n$ points with an unknown underlying partition, we are allowed to query pairs of points $u,v$ to check if they are in the same cluster, but with probability $p$, the answer may be adversarially chosen. We show that information theoretically $O\left(\frac{nk \log n} {(1-2p)^2}\right)$ queries suffice to learn any cluster of sufficiently large size. Our main result is a computationally efficient algorithm that can identify large clusters with $O\left(\frac{nk \log n} {(1-2p)^2}\right) + \text{poly}\left(\log n, k, \frac{1}{1-2p} \right)$ queries, matching the guarantees of the best known algorithms in the fully-random model. As a corollary of our approach, we develop the first parameter-free algorithm for the fully-random model, answering an open question by \cite{MS17a}.

A data lake is a repository of data with potential for future analysis. However, both discovering what data is in a data lake and exploring related data sets can take significant effort, as a data lake can contain an intimidating amount of heterogeneous data. In this paper, we propose the use of schema inference to support the interpretation of the data in the data lake. If a data lake is to support a schema-on-read paradigm, understanding the existing schema of relevant portions of the data lake seems like a prerequisite. In this paper, we make use of approximate indexes that can be used for data discovery to inform the inference of a schema for a data lake, consisting of entity types and the relationships between them. The specific approach identifies candidate entity types by clustering similar data sets from the data lake, and then relationships between data sets in different clusters are used to inform the identification of relationships between the entity types. The approach is evaluated using real-world data repositories, to identify where the proposal is effective, and to inform the identification of areas for further work.

We tackle a new task, event graph completion, which aims to predict missing event nodes for event graphs. Existing link prediction or graph completion methods have difficulty dealing with event graphs because they are usually designed for a single large graph such as a social network or a knowledge graph, rather than multiple small dynamic event graphs. Moreover, they can only predict missing edges rather than missing nodes. In this work, we propose to utilize event schema, a template that describes the stereotypical structure of event graphs, to address the above issues. Our schema-guided event graph completion approach first maps an instance event graph to a subgraph of the schema graph by a heuristic subgraph matching algorithm. Then it predicts whether a candidate event node in the schema graph should be added to the instantiated schema subgraph by characterizing two types of local topology of the schema graph: neighbors of the candidate node and the subgraph, and paths that connect the candidate node and the subgraph. These two modules are later combined together for the final prediction. We also propose a self-supervised strategy to construct training samples, as well as an inference algorithm that is specifically designed to complete event graphs. Extensive experimental results on four datasets demonstrate that our proposed method achieves state-of-the-art performance, with 4.3% to 19.4% absolute F1 gains over the best baseline method on the four datasets.

The question of answering queries over ML predictions has been gaining attention in the database community. This question is challenging because the cost of finding high quality answers corresponds to invoking an oracle such as a human expert or an expensive deep neural network model on every single item in the DB and then applying the query. We develop a novel unified framework for approximate query answering by leveraging a proxy to minimize the oracle usage of finding high quality answers for both Precision-Target (PT) and Recall-Target (RT) queries. Our framework uses a judicious combination of invoking the expensive oracle on data samples and applying the cheap proxy on the objects in the DB. It relies on two assumptions. Under the Proxy Quality assumption, proxy quality can be quantified in a probabilistic manner w.r.t. the oracle. This allows us to develop two algorithms: PQA that efficiently finds high quality answers with high probability and no oracle calls, and PQE, a heuristic extension that achieves empirically good performance with a small number of oracle calls. Alternatively, under the Core Set Closure assumption, we develop two algorithms: CSC that efficiently returns high quality answers with high probability and minimal oracle usage, and CSE, which extends it to more general settings. Our extensive experiments on five real-world datasets on both query types, PT and RT, demonstrate that our algorithms outperform the state-of-the-art and achieve high result quality with provable statistical guarantees.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After a general introduction, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs.

北京阿比特科技有限公司