Artificial intelligence (AI) has been applied widely in our daily lives in a variety of ways with numerous successful stories. AI has also contributed to dealing with the coronavirus disease (COVID-19) pandemic, which has been happening around the globe. This paper presents a survey of AI methods being used in various applications in the fight against the COVID-19 outbreak and outlines the crucial roles of AI research in this unprecedented battle. We touch on a number of areas where AI plays as an essential component, from medical image processing, data analytics, text mining and natural language processing, the Internet of Things, to computational biology and medicine. A summary of COVID-19 related data sources that are available for research purposes is also presented. Research directions on exploring the potentials of AI and enhancing its capabilities and power in the battle are thoroughly discussed. We highlight 13 groups of problems related to the COVID-19 pandemic and point out promising AI methods and tools that can be used to solve those problems. It is envisaged that this study will provide AI researchers and the wider community an overview of the current status of AI applications and motivate researchers in harnessing AI potentials in the fight against COVID-19.
With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively.
Coronavirus disease (COVID-19) pandemic has changed various aspects of people's lives and behaviors. At this stage, there are no other ways to control the natural progression of the disease than adopting mitigation strategies such as wearing masks, watching distance, and washing hands. Moreover, at this time of social distancing, social media plays a key role in connecting people and providing a platform for expressing their feelings. In this study, we tap into social media to surveil the uptake of mitigation and detection strategies, and capture issues and concerns about the pandemic. In particular, we explore the research question, "how much can be learned regarding the public uptake of mitigation strategies and concerns about COVID-19 pandemic by using natural language processing on Reddit posts?" After extracting COVID-related posts from the four largest subreddit communities of North Carolina over six months, we performed NLP-based preprocessing to clean the noisy data. We employed a custom Named-entity Recognition (NER) system and a Latent Dirichlet Allocation (LDA) method for topic modeling on a Reddit corpus. We observed that 'mask', 'flu', and 'testing' are the most prevalent named-entities for "Personal Protective Equipment", "symptoms", and "testing" categories, respectively. We also observed that the most discussed topics are related to testing, masks, and employment. The mitigation measures are the most prevalent theme of discussion across all subreddits.
We present zbMATH Open, the most comprehensive collection of reviews and bibliographic metadata of scholarly literature in mathematics. Besides our website //zbMATH.org which is openly accessible since the beginning of this year, we provide API endpoints to offer our data. The API improves interoperability with others, i.e., digital libraries, and allows using our data for research purposes. In this article, we (1) illustrate the current and future overview of the services offered by zbMATH; (2) present the initial version of the zbMATH links API; (3) analyze potentials and limitations of the links API based on the example of the NIST Digital Library of Mathematical Functions; (4) and finally, present the zbMATH Open dataset as a research resource and discuss connected open research problems.
COVID-19 has disrupted normal life and has enforced a substantial change in the policies, priorities and activities of individuals, organisations and governments. These changes are proving to be a catalyst for technology and innovation. In this paper, we discuss the pandemic's potential impact on the adoption of the Internet of Things (IoT) in various broad sectors namely healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Our perspective and forecast of this impact on IoT adoption is based on a thorough research literature review, a careful examination of reports from leading consulting firms and interactions with several industry experts. For each of these sectors, we also provide the details of notable IoT initiatives taken in wake of COVID-19. We also highlight the challenges that need to be addressed and important research directions that will facilitate accelerated IoT adoption.
The multidisciplinary nature of response robotics has brought about a diversified research community with extended expertise. Motivated by the recent accelerated rate of publications in the field, this paper analyzes the technical content, statistics, and implications of the literature from bibliometric standpoints. The aim is to study the global progress of response robotics research and identify the contemporary trends. To that end, we investigated the collaboration mapping together with the citation network to formally recognize impactful and contributing authors, publications, sources, institutions, funding agencies, and countries. We found how natural and human-made disasters contributed to forming productive regional research communities, while there are communities that only view response robotics as an application of their research. Furthermore, through an extensive discussion on the bibliometric results, we elucidated the philosophy behind research priority shifts in response robotics and presented our deliberations on future research directions.
The development of artificial intelligence (AI) technologies has far exceeded the investigation of their relationship with society. Sociotechnical inquiry is needed to mitigate the harms of new technologies whose potential impacts remain poorly understood. To date, subfields of AI research develop primarily individual views on their relationship with sociotechnics, while tools for external investigation, comparison, and cross-pollination are lacking. In this paper, we propose four directions for inquiry into new and evolving areas of technological development: value--what progress and direction does a field promote, optimization--how the defined system within a problem formulation relates to broader dynamics, consensus--how agreement is achieved and who is included in building it, and failure--what methods are pursued when the problem specification is found wanting. The paper provides a lexicon for sociotechnical inquiry and illustrates it through the example of consumer drone technology.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.