This paper takes an initial step to systematically investigate the generalization bounds of algorithms for solving nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving $\epsilon$-generalization are $\tilde{\mathcal{O}}(d\kappa^2\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d\epsilon^{-4})$ for NC-SC and NC-C settings, respectively, where $d$ is the dimension and $\kappa$ is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between generalization bounds and the stability notion. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) algorithm and the more general sampling-determined algorithms.
This paper is concerned with a class of DC composite optimization problems which, as an extension of the convex composite optimization problem and the DC program with nonsmooth components, often arises from robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) which in each step computes an inexact minimizer of a strongly convex majorization constructed by the partial linearization of their objective functions. The generated iterate sequence is shown to be convergent under the Kurdyka-{\L}ojasiewicz (KL) property of a potential function, and the convergence admits a local R-linear rate if the potential function has the KL property of exponent $1/2$ at the limit point. For the latter assumption, we provide a verifiable condition by leveraging the composite structure, and clarify its relation with the regularity used for the convex composite optimization. Finally, the proposed iLPA is applied to a robust factorization model for matrix completions with outliers, DC programs with nonsmooth components, and $\ell_1$-norm exact penalty of DC constrained programs, and numerical comparison with the existing algorithms confirms the superiority of our iLPA in computing time and quality of solutions.
This paper provides a finite-time analysis of linear stochastic approximation (LSA) algorithms with fixed step size, a core method in statistics and machine learning. LSA is used to compute approximate solutions of a $d$-dimensional linear system $\bar{\mathbf{A}} \theta = \bar{\mathbf{b}}$ for which $(\bar{\mathbf{A}}, \bar{\mathbf{b}})$ can only be estimated by (asymptotically) unbiased observations $\{(\mathbf{A}(Z_n),\mathbf{b}(Z_n))\}_{n \in \mathbb{N}}$. We consider here the case where $\{Z_n\}_{n \in \mathbb{N}}$ is an i.i.d. sequence or a uniformly geometrically ergodic Markov chain. We derive $p$-th moment and high-probability deviation bounds for the iterates defined by LSA and its Polyak-Ruppert-averaged version. Our finite-time instance-dependent bounds for the averaged LSA iterates are sharp in the sense that the leading term we obtain coincides with the local asymptotic minimax limit. Moreover, the remainder terms of our bounds admit a tight dependence on the mixing time $t_{\operatorname{mix}}$ of the underlying chain and the norm of the noise variables. We emphasize that our result requires the SA step size to scale only with logarithm of the problem dimension $d$.
Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary -- for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same ``canonical'' solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most $n$. Morris's counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses $O(\log\log n)$ bits of space, for every fixed approximation factor (greater than $1$). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use $\Omega(\sqrt{\log n / \log\log n})$ bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string $F\in\{0,1\}^{3n}$, which is guaranteed to start with $n$ zeros and end with $n$ ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses $O(\sqrt{n})$ queries. It remains open whether $poly(\log n)$ queries suffice; if true, then our techniques immediately imply a nearly-tight $\Omega(\log n/\log\log n)$ space bound for pseudo-deterministic approximate counting.
We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. The latter bound verifies the existence of a conjectured statistical gap between the private and the non-private sample complexities for spectral estimation of Gaussian covariances. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon, 0)$-differential privacy.
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. Remarkably, we show that minimization of these quadratic objectives leads to control of the likelihood for any of our generative models built upon stochastic dynamics. By contrast, we establish that generative models based upon a deterministic dynamics must, in addition, control the Fisher divergence between the target and the model. We also construct estimators for the likelihood and the cross-entropy of interpolant-based generative models, discuss connections with other stochastic bridges, and demonstrate that such models recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant.
We present a new family of information-theoretic generalization bounds, in which the training loss and the population loss are compared through a jointly convex function. This function is upper-bounded in terms of the disintegrated, samplewise, evaluated conditional mutual information (CMI), an information measure that depends on the losses incurred by the selected hypothesis, rather than on the hypothesis itself, as is common in probably approximately correct (PAC)-Bayesian results. We demonstrate the generality of this framework by recovering and extending previously known information-theoretic bounds. Furthermore, using the evaluated CMI, we derive a samplewise, average version of Seeger's PAC-Bayesian bound, where the convex function is the binary KL divergence. In some scenarios, this novel bound results in a tighter characterization of the population loss of deep neural networks than previous bounds. Finally, we derive high-probability versions of some of these average bounds. We demonstrate the unifying nature of the evaluated CMI bounds by using them to recover average and high-probability generalization bounds for multiclass classification with finite Natarajan dimension.
Motivated by the discrete dipole approximation (DDA) for the scattering of electromagnetic waves by a dielectric obstacle that can be considered as a simple discretization of a Lippmann-Schwinger style volume integral equation for time-harmonic Maxwell equations, we analyze an analogous discretization of convolution operators with strongly singular kernels. For a class of kernel functions that includes the finite Hilbert transformation in 1D and the principal part of the Maxwell volume integral operator used for DDA in dimensions 2 and 3, we show that the method, which does not fit into known frameworks of projection methods, can nevertheless be considered as a finite section method for an infinite block Toeplitz matrix. The symbol of this matrix is given by a Fourier series that does not converge absolutely. We use Ewald's method to obtain an exponentially fast convergent series representation of this symbol and show that it is a bounded function, thereby allowing to describe the spectrum and the numerical range of the matrix. It turns out that this numerical range includes the numerical range of the integral operator, but that it is in some cases strictly larger. In these cases the discretization method does not provide a spectrally correct approximation, and while it is stable for a large range of the spectral parameter $\lambda$, there are values of $\lambda$ for which the singular integral equation is well posed, but the discretization method is unstable.
A recent line of works, initiated by Russo and Xu, has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of the expected generalization error is in the form of $O(\sqrt{\lambda/n})$ where $\lambda$ is some information-theoretic quantities such as the mutual information or conditional mutual information between the data and the learned hypothesis. However, such a learning rate is typically considered to be ``slow", compared to a ``fast rate" of $O(\lambda/n)$ in many learning scenarios. In this work, we first show that the square root does not necessarily imply a slow rate, and a fast rate result can still be obtained using this bound under appropriate assumptions. Furthermore, we identify the critical conditions needed for the fast rate generalization error, which we call the $(\eta,c)$-central condition. Under this condition, we give information-theoretic bounds on the generalization error and excess risk, with a fast convergence rate for specific learning algorithms such as empirical risk minimization and its regularized version. Finally, several analytical examples are given to show the effectiveness of the bounds.
Recently, several studies consider the stochastic optimization problem but in a heavy-tailed noise regime, i.e., the difference between the stochastic gradient and the true gradient is assumed to have a finite $p$-th moment (say being upper bounded by $\sigma^{p}$ for some $\sigma\geq0$) where $p\in(1,2]$, which not only generalizes the traditional finite variance assumption ($p=2$) but also has been observed in practice for several different tasks. Under this challenging assumption, lots of new progress has been made for either convex or nonconvex problems, however, most of which only consider smooth objectives. In contrast, people have not fully explored and well understood this problem when functions are nonsmooth. This paper aims to fill this crucial gap by providing a comprehensive analysis of stochastic nonsmooth convex optimization with heavy-tailed noises. We revisit a simple clipping-based algorithm, whereas, which is only proved to converge in expectation but under the additional strong convexity assumption. Under appropriate choices of parameters, for both convex and strongly convex functions, we not only establish the first high-probability rates but also give refined in-expectation bounds compared with existing works. Remarkably, all of our results are optimal (or nearly optimal up to logarithmic factors) with respect to the time horizon $T$ even when $T$ is unknown in advance. Additionally, we show how to make the algorithm parameter-free with respect to $\sigma$, in other words, the algorithm can still guarantee convergence without any prior knowledge of $\sigma$.
Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works.