Data visualization practitioners often lack formal training, resulting in a knowledge gap in visualization design best practices. Large-language models like ChatGPT, with their vast internet-scale training data, offer transformative potential in addressing this gap. To explore this potential, we adopted a mixed-method approach. Initially, we analyzed the VisGuide forum, a repository of data visualization questions, by comparing ChatGPT-generated responses to human replies. Subsequently, our user study delved into practitioners' reactions and attitudes toward ChatGPT as a visualization assistant. Participants, who brought their visualizations and questions, received feedback from both human experts and ChatGPT in a randomized order. They filled out experience surveys and shared deeper insights through post-interviews. The results highlight the unique advantages and disadvantages of ChatGPT, such as its ability to quickly provide a wide range of design options based on a broad knowledge base, while also revealing its limitations in terms of depth and critical thinking capabilities.
Every SQL statement is limited to return a single, possibly denormalized, table. This design decision has far reaching consequences. (1.) for databases users in terms of slow query performance, long query result transfer times, usability-issues of SQL in web applications and object-relational mappers. In addition, (2.) for database architects it has consequences when designing query optimizers leading to logical (algebraic) join enumeration effort, memory consumption for intermediate result materialization, and physical operator selection effort. So basically, the entire query optimization stack is shaped by that design decision. In this paper, we argue that the single-table limitation should be dropped. We extend the SELECT-clause of SQL by a keyword 'RESULTDB' to support returning a result database. Our approach has clear semantics, i.e. our extended SQL returns subsets of all tables with only those tuples that would be part of the traditional (single-table) query result set, however without performing any denormalization through joins. Our SQL-extension is downward compatible. Moreover, we discuss the surprisingly long list of benefits of our approach. First, for database users: far simpler and more readable application code, better query performance, smaller query results, better query result transfer times. Second, for database architects, we present how to leverage existing closed source systems as well as change open source database systems to support our feature. We propose a couple of algorithms to integrate our feature into both closed-source as well as open source database systems. We present an initial experimental study with promising results.
Programming language understanding and representation (a.k.a code representation learning) has always been a hot and challenging task in software engineering. It aims to apply deep learning techniques to produce numerical representations of the source code features while preserving its semantics. These representations can be used for facilitating subsequent code-related tasks. The abstract syntax tree (AST), a fundamental code feature, illustrates the syntactic information of the source code and has been widely used in code representation learning. However, there is still a lack of systematic and quantitative evaluation of how well AST-based code representation facilitates subsequent code-related tasks. In this paper, we first conduct a comprehensive empirical study to explore the effectiveness of the AST-based code representation in facilitating follow-up code-related tasks. To do so, we compare the performance of models trained with code token sequence (Token for short) based code representation and AST-based code representation on three popular types of code-related tasks. Surprisingly, the overall quantitative statistical results demonstrate that models trained with AST-based code representation consistently perform worse across all three tasks compared to models trained with Token-based code representation. Our further quantitative analysis reveals that models trained with AST-based code representation outperform models trained with Token-based code representation in certain subsets of samples across all three tasks. We also conduct comprehensive experiments to evaluate and reveal the impact of the choice of AST parsing/preprocessing/encoding methods on AST-based code representation and subsequent code-related tasks. Our study provides future researchers with detailed guidance on how to select solutions at each stage to fully exploit AST.
Human visual recognition system shows astonishing capability of compressing visual information into a set of tokens containing rich representations without label supervision. One critical driving principle behind it is perceptual grouping. Despite being widely used in computer vision in the early 2010s, it remains a mystery whether perceptual grouping can be leveraged to derive a neural visual recognition backbone that generates as powerful representations. In this paper, we propose the Perceptual Group Tokenizer, a model that entirely relies on grouping operations to extract visual features and perform self-supervised representation learning, where a series of grouping operations are used to iteratively hypothesize the context for pixels or superpixels to refine feature representations. We show that the proposed model can achieve competitive performance compared to state-of-the-art vision architectures, and inherits desirable properties including adaptive computation without re-training, and interpretability. Specifically, Perceptual Group Tokenizer achieves 80.3% on ImageNet-1K self-supervised learning benchmark with linear probe evaluation, marking a new progress under this paradigm.
Data augmentation via back-translation is common when pretraining Vision-and-Language Navigation (VLN) models, even though the generated instructions are noisy. But: does that noise matter? We find that nonsensical or irrelevant language instructions during pretraining can have little effect on downstream performance for both HAMT and VLN-BERT on R2R, and is still better than only using clean, human data. To underscore these results, we concoct an efficient augmentation method, Unigram + Object, which generates nonsensical instructions that nonetheless improve downstream performance. Our findings suggest that what matters for VLN R2R pretraining is the quantity of visual trajectories, not the quality of instructions.
The complexity of database systems has increased significantly along with the continuous growth of data, resulting in NoSQL systems and forcing Information Systems (IS) architects to constantly adapt their data models (i.e., the data structure of information stored in the database) and carefully choose the best option(s) for storing and managing data. In this context, we propose %in this paper an automatic global approach for leading data models' transformation process. This approach starts with the generation of all possible solutions. It then relies on a cost model that helps to compare these generated data models in a logical level to finally choose the best one for the given use case. This cost model integrates both data model and queries cost. It also takes into consideration the environmental impact of a data model as well as its financial and its time costs. This work presents for the first time a multidimensional cost model encompassing time, environmental and financial constraints, which compares data models leading to the choice of the optimal one for a given use case. In addition, a simulation for data model's transformation and cost computation has been developed based on our approach.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
The LSTM network was proposed to overcome the difficulty in learning long-term dependence, and has made significant advancements in applications. With its success and drawbacks in mind, this paper raises the question - do RNN and LSTM have long memory? We answer it partially by proving that RNN and LSTM do not have long memory from a statistical perspective. A new definition for long memory networks is further introduced, and it requires the model weights to decay at a polynomial rate. To verify our theory, we convert RNN and LSTM into long memory networks by making a minimal modification, and their superiority is illustrated in modeling long-term dependence of various datasets.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.