Globally, there is an increased need for guidelines to produce high-quality data outputs for analysis. There is no framework currently exists providing guidelines for a comprehensive approach in producing analysis ready data (ARD). Through critically reviewing and summarising current literature, this paper proposes such guidelines for the creation of ARD. The guidelines proposed in this paper inform ten steps in the generation of ARD: ethics, project documentation, data governance, data management, data storage, data discovery and collection, data cleaning, quality assurance, metadata, and data dictionary. These steps are illustrated through a substantive case study which aimed to create ARD for a digital spatial platform: the Australian Child and Youth Wellbeing Atlas (ACYWA).
Double descent presents a counter-intuitive aspect within the machine learning domain, and researchers have observed its manifestation in various models and tasks. While some theoretical explanations have been proposed for this phenomenon in specific contexts, an accepted theory to account for its occurrence in deep learning remains yet to be established. In this study, we revisit the phenomenon of double descent and demonstrate that its occurrence is strongly influenced by the presence of noisy data. Through conducting a comprehensive analysis of the feature space of learned representations, we unveil that double descent arises in imperfect models trained with noisy data. We argue that double descent is a consequence of the model first learning the noisy data until interpolation and then adding implicit regularization via over-parameterization acquiring therefore capability to separate the information from the noise.
Simulators are a pervasive tool in reinforcement learning, but most existing algorithms cannot efficiently exploit simulator access -- particularly in high-dimensional domains that require general function approximation. We explore the power of simulators through online reinforcement learning with {local simulator access} (or, local planning), an RL protocol where the agent is allowed to reset to previously observed states and follow their dynamics during training. We use local simulator access to unlock new statistical guarantees that were previously out of reach: - We show that MDPs with low coverability Xie et al. 2023 -- a general structural condition that subsumes Block MDPs and Low-Rank MDPs -- can be learned in a sample-efficient fashion with only $Q^{\star}$-realizability (realizability of the optimal state-value function); existing online RL algorithms require significantly stronger representation conditions. - As a consequence, we show that the notorious Exogenous Block MDP problem Efroni et al. 2022 is tractable under local simulator access. The results above are achieved through a computationally inefficient algorithm. We complement them with a more computationally efficient algorithm, RVFS (Recursive Value Function Search), which achieves provable sample complexity guarantees under a strengthened statistical assumption known as pushforward coverability. RVFS can be viewed as a principled, provable counterpart to a successful empirical paradigm that combines recursive search (e.g., MCTS) with value function approximation.
Reinforcement Learning (RL) is a powerful method for controlling dynamic systems, but its learning mechanism can lead to unpredictable actions that undermine the safety of critical systems. Here, we propose RL with Adaptive Control Regularization (RL-ACR) that ensures RL safety by combining the RL policy with a control regularizer that hard-codes safety constraints over forecasted system behaviors. The adaptability is achieved by using a learnable "focus" weight trained to maximize the cumulative reward of the policy combination. As the RL policy improves through off-policy learning, the focus weight improves the initial sub-optimum strategy by gradually relying more on the RL policy. We demonstrate the effectiveness of RL-ACR in a critical medical control application and further investigate its performance in four classic control environments.
Intelligent machine learning approaches are finding active use for event detection and identification that allow real-time situational awareness. Yet, such machine learning algorithms have been shown to be susceptible to adversarial attacks on the incoming telemetry data. This paper considers a physics-based modal decomposition method to extract features for event classification and focuses on interpretable classifiers including logistic regression and gradient boosting to distinguish two types of events: load loss and generation loss. The resulting classifiers are then tested against an adversarial algorithm to evaluate their robustness. The adversarial attack is tested in two settings: the white box setting, wherein the attacker knows exactly the classification model; and the gray box setting, wherein the attacker has access to historical data from the same network as was used to train the classifier, but does not know the classification model. Thorough experiments on the synthetic South Carolina 500-bus system highlight that a relatively simpler model such as logistic regression is more susceptible to adversarial attacks than gradient boosting.
Safety and responsibility evaluations of advanced AI models are a critical but developing field of research and practice. In the development of Google DeepMind's advanced AI models, we innovated on and applied a broad set of approaches to safety evaluation. In this report, we summarise and share elements of our evolving approach as well as lessons learned for a broad audience. Key lessons learned include: First, theoretical underpinnings and frameworks are invaluable to organise the breadth of risk domains, modalities, forms, metrics, and goals. Second, theory and practice of safety evaluation development each benefit from collaboration to clarify goals, methods and challenges, and facilitate the transfer of insights between different stakeholders and disciplines. Third, similar key methods, lessons, and institutions apply across the range of concerns in responsibility and safety - including established and emerging harms. For this reason it is important that a wide range of actors working on safety evaluation and safety research communities work together to develop, refine and implement novel evaluation approaches and best practices, rather than operating in silos. The report concludes with outlining the clear need to rapidly advance the science of evaluations, to integrate new evaluations into the development and governance of AI, to establish scientifically-grounded norms and standards, and to promote a robust evaluation ecosystem.
We propose a method to couple local and nonlocal diffusion models. By inheriting desirable properties such as patch tests, asymptotic compatibility and unintrusiveness from related splice and optimization-based coupling schemes, it enables the use of weak (or variational) formulations, is computationally efficient and straightforward to implement. We prove well-posedness of the coupling scheme and demonstrate its properties and effectiveness in a variety of numerical examples.
The thesis develops a view of design in a concept formation framework and outlines a language to describe both the object of the design and the process of designing. The unknown object at the outset of the design work may be seen as an unknown concept that the designer is to define. Throughout the process, she develops a description of this object by relating it to known concepts. The search stops when the designer is satisfied that the design specification is complete enough to satisfy the requirements from it once built. It is then a collection of propositions that all contribute towards defining the design object - a collection of sentences describing relationships between the object and known concepts. Also, the design process itself may be described by relating known concepts - by organizing known abilities into particular patterns of activation, or mobilization. In view of the demands posed to a language to use in this concept formation process, the framework of a Design Process Language (DPL) is developed. The basis for the language are linguistic categories that act as classes of relations used to combine concepts, containing relations used for describing process and object within the same general system, with some relations being process specific, others being object specific, and with the bulk being used both for process and object description. Another outcome is the distinction of modal relations, or relations describing futurity, possibility, willingness, hypothetical events, and the like. The design process almost always includes aspects such as these, and it is thus necessary for a language facilitating design process description to support such relationships to be constructed. The DPL is argued to be a foundation whereupon to build a language that can be used for enabling computers to be more useful - act more intelligently - in the design process.
We investigate the computational power of particle methods, a well-established class of algorithms with applications in scientific computing and computer simulation. The computational power of a compute model determines the class of problems it can solve. Automata theory allows describing the computational power of abstract machines (automata) and the problems they can solve. At the top of the Chomsky hierarchy of formal languages and grammars are Turing machines, which resemble the concept on which most modern computers are built. Although particle methods can be interpreted as automata based on their formal definition, their computational power has so far not been studied. We address this by analyzing Turing completeness of particle methods. In particular, we prove two sets of restrictions under which a particle method is still Turing powerful, and we show when it loses Turing powerfulness. This contributes to understanding the theoretical foundations of particle methods and provides insight into the powerfulness of computer simulations.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.