We construct a counterexample to the injectivity conjecture of Masarotto et al (2018). Namely, we construct a class of examples of injective covariance operators on an infinite-dimensional separable Hilbert space for which the Bures--Wasserstein barycentre is highly non injective -- it has a kernel of infinite dimension.
In this work we present deep learning implementations of two popular theoretical constrained optimization algorithms in infinite dimensional Hilbert spaces, namely, the penalty and the augmented Lagrangian methods. We test these algorithms on some toy problems originating in either calculus of variations or physics. We demonstrate that both methods are able to produce decent approximations for the test problems and are comparable in terms of different errors produced. Leveraging the common occurrence of the Lagrange multiplier update rule being computationally less expensive than solving subproblems in the penalty method, we achieve significant speedups in cases when the output of the constraint function is itself a function.
In this article we present a numerical method for the Stokes flow of an Oldroyd-B fluid. The viscoelastic stress evolves according to a constitutive law formulated in terms of the upper convected time derivative. A finite difference method is used to discretise along fluid trajectories to approximate the advection and deformation terms of the upper convected derivative in a simple, cheap and cohesive manner, as well as ensuring that the discrete conformation tensor is positive definite. A full implementation with coupling to the fluid flow is presented, along with detailed discussion of the issues that arise with such schemes. We demonstrate the performance of this method with detailed numerical experiments in a lid-driven cavity setup. Numerical results are benchmarked against published data, and the method is shown to perform well in this challenging case.
We explore Langevin dynamics in the spherical Sherrington-Kirkpatrick model, delving into the asymptotic energy limit. Our approach involves integro-differential equations, incorporating the Crisanti-Horner-Sommers-Cugliandolo-Kurchan equation from spin glass literature, to analyze the system's size and its temperature-dependent phase transition. Additionally, we conduct an average case complexity analysis, establishing hitting time bounds for the bottom eigenvector of a Wigner matrix. Our investigation also includes the power iteration algorithm, examining its average case complexity in identifying the top eigenvector overlap, with comprehensive complexity bounds.
The distribution for the minimum of Brownian motion or the Cauchy process is well-known using the reflection principle. Here we consider the problem of finding the sample-by-sample minimum, which we call the online minimum search. We consider the possibility of the golden search method, but we show quantitatively that the bisection method is more efficient. In the bisection method there is a hierarchical parameter, which tunes the depth to which each sub-search is conducted, somewhat similarly to how a depth-first search works to generate a topological ordering on nodes. Finally, we consider the possibility of using harmonic measure, which is a novel idea that has so far been unexplored.
In a topology optimization setting, design-dependent fluidic pressure loads pose several challenges as their direction, magnitude, and location alter with topology evolution. This paper offers a compact 100-line MATLAB code, TOPress, for topology optimization of structures subjected to fluidic pressure loads using the method of moving asymptotes. The code is intended for pedagogical purposes and aims to ease the beginners' and students' learning toward topology optimization with design-dependent fluidic pressure loads. TOPress is developed per the approach first reported in Kumar et al. (Struct Multidisc Optim 61(4):1637-1655, 2020). The Darcy law, in conjunction with the drainage term, is used to model the applied pressure load. The consistent nodal loads are determined from the obtained pressure field. The employed approach facilitates inexpensive computation of the load sensitivities using the adjoint-variable method. Compliance minimization subject to volume constraint optimization problems are solved. The success and efficacy of the code are demonstrated by solving benchmark numerical examples involving pressure loads, wherein the importance of load sensitivities is also demonstrated. TOPress contains six main parts, is described in detail, and is extended to solve different problems. Steps to include a projection filter are provided to achieve loadbearing designs close to~0-1. The code is provided in Appendix~B and can also be downloaded along with its extensions from \url{//github.com/PrabhatIn/TOPress}.
The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the Despr\'es algorithm for solving harmonic wave problems where transmission conditions are enforced by means of a non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain decomposition algorithm.
A new nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the Discrete Cosine Transform (DCT) is proposed. The method is implemented in the R package vstdct that accompanies the paper.
In this paper, we conduct rigorous error analysis of the Lie-Totter time-splitting Fourier spectral scheme for the nonlinear Schr\"odinger equation with a logarithmic nonlinear term $f(u)=u\ln|u|^2$ (LogSE) and periodic boundary conditions on a $d$-dimensional torus $\mathbb T^d$. Different from existing works based on regularisation of the nonlinear term $ f(u)\approx f^\varepsilon(u)=u\ln (|u| + \varepsilon )^2,$ we directly discretize the LogSE with the understanding $f(0)=0.$ Remarkably, in the time-splitting scheme, the solution flow map of the nonlinear part: $g(u)= u {\rm e}^{-{\rm} i t \ln|u|^{2}}$ has a higher regularity than $f(u)$ (which is not differentiable at $u=0$ but H\"older continuous), where $g(u)$ is Lipschitz continuous and possesses a certain fractional Sobolev regularity with index $0<s<1$. Accordingly, we can derive the $L^2$-error estimate: $O\big((\tau^{s/2} + N^{-s})\ln\! N\big)$ of the proposed scheme for the LogSE with low regularity solution $u\in C((0,T]; H^s( \mathbb{T}^d)\cap L^\infty( \mathbb{T}^d)).$ Moreover, we can show that the estimate holds for $s=1$ with more delicate analysis of the nonlinear term and the associated solution flow maps. Furthermore, we provide ample numerical results to demonstrate such a fractional-order convergence for initial data with low regularity. This work is the first one devoted to the analysis of splitting scheme for the LogSE without regularisation in the low regularity setting, as far as we can tell.
We study some properties of a multi-species degenerate Ginzburg-Landau energy and its relation to a cross-diffusion Cahn-Hilliard system. The model is motivated by multicomponent mixtures where crossdiffusion effects between the different species are taken into account, and where only one species does separate from the others. Using a comparison argument, we obtain strict bounds on the minimizers from which we can derive first-order optimality conditions, revealing a link with the single-species energy, and providing enough regularity to qualify the minimizers as stationary solutions of the evolution system. We also discuss convexity properties of the energy as well as long time asymptotics of the time-dependent problem. Lastly, we introduce a structure-preserving finite volume scheme for the time-dependent problem and present several numerical experiments in one and two spatial dimensions.
Testing the goodness-of-fit of a model with its defining functional constraints in the parameters could date back to Spearman (1927), who analyzed the famous "tetrad" polynomial in the covariance matrix of the observed variables in a single-factor model. Despite its long history, the Wald test typically employed to operationalize this approach could produce very inaccurate test sizes in many situations, even when the regular conditions for the classical normal asymptotics are met and a very large sample is available. Focusing on testing a polynomial constraint in a Gaussian covariance matrix, we obtained a new understanding of this baffling phenomenon: When the null hypothesis is true but "near-singular", the standardized Wald test exhibits slow weak convergence, owing to the sophisticated dependency structure inherent to the underlying U-statistic that ultimately drives its limiting distribution; this can also be rigorously explained by a key ratio of moments encoded in the Berry-Esseen bound quantifying the normal approximation error involved. As an alternative, we advocate the use of an incomplete U-statistic to mildly tone down the dependence thereof and render the speed of convergence agnostic to the singularity status of the hypothesis. In parallel, we develop a Berry-Esseen bound that is mathematically descriptive of the singularity-agnostic nature of our standardized incomplete U-statistic, using some of the finest exponential-type inequalities in the literature.