Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.
Graph Neural Networks (GNNs) have shown promising potential in graph representation learning. The majority of GNNs define a local message-passing mechanism, propagating information over the graph by stacking multiple layers. These methods, however, are known to suffer from two major limitations: over-squashing and poor capturing of long-range dependencies. Recently, Graph Transformers (GTs) emerged as a powerful alternative to Message-Passing Neural Networks (MPNNs). GTs, however, have quadratic computational cost, lack inductive biases on graph structures, and rely on complex Positional/Structural Encodings (SE/PE). In this paper, we show that while Transformers, complex message-passing, and SE/PE are sufficient for good performance in practice, neither is necessary. Motivated by the recent success of State Space Models (SSMs), such as Mamba, we present Graph Mamba Networks (GMNs), a general framework for a new class of GNNs based on selective SSMs. We discuss and categorize the new challenges when adopting SSMs to graph-structured data, and present four required and one optional steps to design GMNs, where we choose (1) Neighborhood Tokenization, (2) Token Ordering, (3) Architecture of Bidirectional Selective SSM Encoder, (4) Local Encoding, and dispensable (5) PE and SE. We further provide theoretical justification for the power of GMNs. Experiments demonstrate that despite much less computational cost, GMNs attain an outstanding performance in long-range, small-scale, large-scale, and heterophilic benchmark datasets.
In the realm of Graph Neural Networks (GNNs), two exciting research directions have recently emerged: Subgraph GNNs and Graph Transformers. In this paper, we propose an architecture that integrates both approaches, dubbed Subgraphormer, which combines the enhanced expressive power, message-passing mechanisms, and aggregation schemes from Subgraph GNNs with attention and positional encodings, arguably the most important components in Graph Transformers. Our method is based on an intriguing new connection we reveal between Subgraph GNNs and product graphs, suggesting that Subgraph GNNs can be formulated as Message Passing Neural Networks (MPNNs) operating on a product of the graph with itself. We use this formulation to design our architecture: first, we devise an attention mechanism based on the connectivity of the product graph. Following this, we propose a novel and efficient positional encoding scheme for Subgraph GNNs, which we derive as a positional encoding for the product graph. Our experimental results demonstrate significant performance improvements over both Subgraph GNNs and Graph Transformers on a wide range of datasets.
In our research, we pioneer a novel approach to evaluate the effectiveness of jailbreak attacks on Large Language Models (LLMs), such as GPT-4 and LLaMa2, diverging from traditional robustness-focused binary evaluations. Our study introduces two distinct evaluation frameworks: a coarse-grained evaluation and a fine-grained evaluation. Each framework, using a scoring range from 0 to 1, offers a unique perspective, enabling a more comprehensive and nuanced evaluation of attack effectiveness and empowering attackers to refine their attack prompts with greater understanding. Furthermore, we have developed a comprehensive ground truth dataset specifically tailored for jailbreak tasks. This dataset not only serves as a crucial benchmark for our current study but also establishes a foundational resource for future research, enabling consistent and comparative analyses in this evolving field. Upon meticulous comparison with traditional evaluation methods, we discovered that our evaluation aligns with the baseline's trend while offering a more profound and detailed assessment. We believe that by accurately evaluating the effectiveness of attack prompts in the Jailbreak task, our work lays a solid foundation for assessing a wider array of similar or even more complex tasks in the realm of prompt injection, potentially revolutionizing this field.
Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination. In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5's Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5's efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Text-to-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.
This academic paper examines the strategic interactions between Japan, other nations, and the International Atomic Energy Agency (IAEA) regarding Japan's decision to release treated nuclear wastewater from the Fukushima Daiichi Nuclear Power Plant into the sea. It introduces a payoff matrix and time-delay elements in replicator dynamic equations to mirror real-world decision-making delays. The paper analyzes the stability of strategies and conditions for different stable states using characteristic roots of a linearized system and numerical simulations. It concludes that time delays significantly affect decision-making stability and evolution trajectories in nuclear wastewater disposal strategies. The study highlights the importance of efficient wastewater treatment technology, the impact of export tax revenue losses on Japan's strategies, and the role of international cooperation. The novelty of the research lies in integrating time-delay elements from ocean dynamics and governmental decision-making into the game-theoretical model.
As the power of Artificial Intelligence (AI) continues to advance, there is increased interest in how best to combine AI-based agents with humans to achieve mission effectiveness. Three perspectives have emerged. The first stems from more conventional human factors traditions and views these entities as highly capable tools that humans can use to accomplish increasingly sophisticated tasks. The second "camp" believes that as the sophistication of these entities increases, it becomes increasingly appropriate to talk about them as "teammates" and use the research on human teams as a foundation for further exploration. The third perspective is emerging and finds both the "tools" and "teammate" metaphors flawed and limiting. This perspective emphasizes "joint activity," "joint cognitive activity," or something similar. In this article, we briefly review these three perspectives.
Honeypots are essential tools in cybersecurity. However, most of them (even the high-interaction ones) lack the required realism to engage and fool human attackers. This limitation makes them easily discernible, hindering their effectiveness. This work introduces a novel method to create dynamic and realistic software honeypots based on Large Language Models. Preliminary results indicate that LLMs can create credible and dynamic honeypots capable of addressing important limitations of previous honeypots, such as deterministic responses, lack of adaptability, etc. We evaluated the realism of each command by conducting an experiment with human attackers who needed to say if the answer from the honeypot was fake or not. Our proposed honeypot, called shelLM, reached an accuracy of 0.92. The source code and prompts necessary for replicating the experiments have been made publicly available.
An effective and efficient architecture performance evaluation scheme is essential for the success of Neural Architecture Search (NAS). To save computational cost, most of existing NAS algorithms often train and evaluate intermediate neural architectures on a small proxy dataset with limited training epochs. But it is difficult to expect an accurate performance estimation of an architecture in such a coarse evaluation way. This paper advocates a new neural architecture evaluation scheme, which aims to determine which architecture would perform better instead of accurately predict the absolute architecture performance. Therefore, we propose a \textbf{relativistic} architecture performance predictor in NAS (ReNAS). We encode neural architectures into feature tensors, and further refining the representations with the predictor. The proposed relativistic performance predictor can be deployed in discrete searching methods to search for the desired architectures without additional evaluation. Experimental results on NAS-Bench-101 dataset suggests that, sampling 424 ($0.1\%$ of the entire search space) neural architectures and their corresponding validation performance is already enough for learning an accurate architecture performance predictor. The accuracies of our searched neural architectures on NAS-Bench-101 and NAS-Bench-201 datasets are higher than that of the state-of-the-art methods and show the priority of the proposed method.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.