The generation of energy-efficient and dynamic-aware robot motions that satisfy constraints such as joint limits, self-collisions, and collisions with the environment remains a challenge. In this context, Riemannian geometry offers promising solutions by identifying robot motions with geodesics on the so-called configuration space manifold. While this manifold naturally considers the intrinsic robot dynamics, constraints such as joint limits, self-collisions, and collisions with the environment remain overlooked. In this paper, we propose a modification of the Riemannian metric of the configuration space manifold allowing for the generation of robot motions as geodesics that efficiently avoid given regions. We introduce a class of Riemannian metrics based on barrier functions that guarantee strict region avoidance by systematically generating accelerations away from no-go regions in joint and task space. We evaluate the proposed Riemannian metric to generate energy-efficient, dynamic-aware, and collision-free motions of a humanoid robot as geodesics and sequences thereof.
Mobile manipulators have been used for inspection, maintenance and repair tasks over the years, but there are some key limitations. Stability concerns typically require mobile platforms to be large in order to handle far-reaching manipulators, or for the manipulators to have drastically reduced workspaces to fit onto smaller mobile platforms. Therefore we propose a combination of two widely-used robots, the Clearpath Jackal unmanned ground vehicle and the Kinova Gen3 six degree-of-freedom manipulator. The Jackal has a small footprint and works well in low-clearance indoor environments. Extensive testing of localization, navigation and mapping using LiDAR sensors makes the Jackal a well developed mobile platform suitable for mobile manipulation. The Gen3 has a long reach with reasonable power consumption for manipulation tasks. A wrist camera for RGB-D sensing and a customizable end effector interface makes the Gen3 suitable for a myriad of manipulation tasks. Typically these features would result in an unstable platform, however with a few minor hardware and software modifications, we have produced a stable, high-performance mobile manipulation platform with significant mobility, reach, sensing, and maneuverability for indoor inspection tasks, without degradation of the component robots' individual capabilities. These assertions were investigated with hardware via semi-autonomous navigation to waypoints in a busy indoor environment, and high-precision self-alignment alongside planar structures for intervention tasks.
Many stochastic processes in the physical and biological sciences can be modelled as Brownian dynamics with multiplicative noise. However, numerical integrators for these processes can lose accuracy or even fail to converge when the diffusion term is configuration-dependent. One remedy is to construct a transform to a constant-diffusion process and sample the transformed process instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can be used either individually or in combination to map a general class of variable-diffusion Brownian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing recovery of the original dynamics. We motivate our methodology using examples in one dimension before then considering multivariate diffusion processes. We illustrate the benefits of the transforms through numerical simulations, demonstrating how the right combination of integrator and transform can improve computational efficiency and the order of convergence to the invariant distribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic Stokes-Einstein diffusion that has applications in biophysical modelling.
Actor-critic algorithms are widely used in reinforcement learning, but are challenging to mathematically analyse due to the online arrival of non-i.i.d. data samples. The distribution of the data samples dynamically changes as the model is updated, introducing a complex feedback loop between the data distribution and the reinforcement learning algorithm. We prove that, under a time rescaling, the online actor-critic algorithm with tabular parametrization converges to an ordinary differential equation (ODE) as the number of updates becomes large. The proof first establishes the geometric ergodicity of the data samples under a fixed actor policy. Then, using a Poisson equation, we prove that the fluctuations of the data samples around a dynamic probability measure, which is a function of the evolving actor model, vanish as the number of updates become large. Once the ODE limit has been derived, we study its convergence properties using a two time-scale analysis which asymptotically de-couples the critic ODE from the actor ODE. The convergence of the critic to the solution of the Bellman equation and the actor to the optimal policy are proven. In addition, a convergence rate to this global minimum is also established. Our convergence analysis holds under specific choices for the learning rates and exploration rates in the actor-critic algorithm, which could provide guidance for the implementation of actor-critic algorithms in practice.
The innovations algorithm is a classical recursive forecasting algorithm used in time series analysis. We develop the innovations algorithm for a class of nonnegative regularly varying time series models constructed via transformed-linear arithmetic. In addition to providing the best linear predictor, the algorithm also enables us to estimate parameters of transformed-linear regularly-varying moving average (MA) models, thus providing a tool for modeling. We first construct an inner product space of transformed-linear combinations of nonnegative regularly-varying random variables and prove its link to a Hilbert space which allows us to employ the projection theorem, from which we develop the transformed-linear innovations algorithm. Turning our attention to the class of transformed linear MA($\infty$) models, we give results on parameter estimation and also show that this class of models is dense in the class of possible tail pairwise dependence functions (TPDFs). We also develop an extremes analogue of the classical Wold decomposition. Simulation study shows that our class of models captures tail dependence for the GARCH(1,1) model and a Markov time series model, both of which are outside our class of models.
For estimating the proportion of false null hypotheses in multiple testing, a family of estimators by Storey (2002) is widely used in the applied and statistical literature, with many methods suggested for selecting the parameter $\lambda$. Inspired by change-point concepts, our new approach to the latter problem first approximates the $p$-value plot with a piecewise linear function with a single change-point and then selects the $p$-value at the change-point location as $\lambda$. Simulations show that our method has among the smallest RMSE across various settings, and we extend it to address the estimation in cases of superuniform $p$-values. We provide asymptotic theory for our estimator, relying on the theory of quantile processes. Additionally, we propose an application in the change-point literature and illustrate it using high-dimensional CNV data.
One of the fundamental results in quantum foundations is the Kochen-Specker (KS) theorem, which states that any theory whose predictions agree with quantum mechanics must be contextual, i.e., a quantum observation cannot be understood as revealing a pre-existing value. The theorem hinges on the existence of a mathematical object called a KS vector system. While many KS vector systems are known, the problem of finding the minimum KS vector system in three dimensions has remained stubbornly open for over 55 years. In this paper, we present a new method based on a combination of a Boolean satisfiability (SAT) solver and a computer algebra system (CAS) to address this problem. Our approach shows that a KS system in three dimensions must contain at least 24 vectors. Our SAT+CAS method is over 35,000 times faster at deriving the previously known lower bound of 22 vectors than the prior CAS-based searches. More importantly, we provide the first computer-verifiable proof certificate of a lower bound in the KS problem with a proof size of 41.6 TiB in order 23. The increase in efficiency is due to the fact we are able to exploit the powerful combinatorial search-with-learning capabilities of SAT solvers, together with the CAS-based isomorph-free exhaustive method of orderly generation of graphs. To the best of our knowledge, our work is the first application of a SAT+CAS method to a problem in the realm of quantum foundations and the first lower bound in the minimum Kochen-Specker problem with a computer-verifiable proof certificate.
Conducting safety simulations in various simulators, such as the Gazebo simulator, became a very popular means of testing vehicles against potential safety risks (i.e. crashes). However, this was not the case with security testing. Performing security testing in a simulator is very difficult because security attacks are performed on a different abstraction level. In addition, the attacks themselves are becoming more sophisticated, which directly contributes to the difficulty of executing them in a simulator. In this paper, we attempt to tackle the aforementioned gap by investigating possible attacks that can be simulated, and then performing their simulations. The presented approach shows that attacks targeting the LiDAR and GPS components of unmanned aerial vehicles can be simulated. This is achieved by exploiting vulnerabilities of the ROS and MAVLink protocol and injecting malicious processes into an application. As a result, messages with arbitrary values can be spoofed to the corresponding topics, which allows attackers to update relevant parameters and cause a potential crash of a vehicle. This was tested in multiple scenarios, thereby proving that it is indeed possible to simulate certain attack types, such as spoofing and jamming.
The goal of this thesis is to study the use of the Kantorovich-Rubinstein distance as to build a descriptor of sample complexity in classification problems. The idea is to use the fact that the Kantorovich-Rubinstein distance is a metric in the space of measures that also takes into account the geometry and topology of the underlying metric space. We associate to each class of points a measure and thus study the geometrical information that we can obtain from the Kantorovich-Rubinstein distance between those measures. We show that a large Kantorovich-Rubinstein distance between those measures allows to conclude that there exists a 1-Lipschitz classifier that classifies well the classes of points. We also discuss the limitation of the Kantorovich-Rubinstein distance as a descriptor.
Quantum density matrix represents all the information of the entire quantum system, and novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others in quantum question answering tasks. Naturally, we argue that applying the quantum density matrix into classical Question Answering (QA) tasks can show more effective performance. Specifically, we (i) design a new mechanism based on Long Short-Term Memory (LSTM) to accommodate the case when the inputs are matrixes; (ii) apply the new mechanism to QA problems with Convolutional Neural Network (CNN) and gain the LSTM-based QA model with the quantum density matrix. Experiments of our new model on TREC-QA and WIKI-QA data sets show encouraging results. Similarly, we argue that the quantum density matrix can also enhance the image feature information and the relationship between the features for the classical image classification. Thus, we (i) combine density matrices and CNN to design a new mechanism; (ii) apply the new mechanism to some representative classical image classification tasks. A series of experiments show that the application of quantum density matrix in image classification has the generalization and high efficiency on different datasets. The application of quantum density matrix both in classical question answering tasks and classical image classification tasks show more effective performance.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.