亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents ContrastWSD, a RoBERTa-based metaphor detection model that integrates the Metaphor Identification Procedure (MIP) and Word Sense Disambiguation (WSD) to extract and contrast the contextual meaning with the basic meaning of a word to determine whether it is used metaphorically in a sentence. By utilizing the word senses derived from a WSD model, our model enhances the metaphor detection process and outperforms other methods that rely solely on contextual embeddings or integrate only the basic definitions and other external knowledge. We evaluate our approach on various benchmark datasets and compare it with strong baselines, indicating the effectiveness in advancing metaphor detection.

相關內容

This paper investigates the low-complex linear minimum mean squared error (LMMSE) channel estimation in an extra-large scale MIMO system with the spherical wave model (SWM). We model the extra-large scale MIMO channels using the SWM in the terahertz (THz) line-of-sight propagation, in which the transceiver is a uniform circular antenna array. On this basis, for the known channel covariance matrix (CCM), a low-complex LMMSE channel estimation algorithm is proposed by exploiting the spherical wave properties (SWP). Meanwhile, for the unknown CCM, a similar low-complex LMMSE channel estimation algorithm is also proposed. Both theoretical and simulation results show that the proposed algorithm has lower complexity without reducing the accuracy of channel estimation.

Embedding tables are used by machine learning systems to work with categorical features. In modern Recommendation Systems, these tables can be very large, necessitating the development of new methods for fitting them in memory, even during training. We suggest Clustered Compositional Embeddings (CCE) which combines clustering-based compression like quantization to codebooks with dynamic methods like The Hashing Trick and Compositional Embeddings (Shi et al., 2020). Experimentally CCE achieves the best of both worlds: The high compression rate of codebook-based quantization, but *dynamically* like hashing-based methods, so it can be used during training. Theoretically, we prove that CCE is guaranteed to converge to the optimal codebook and give a tight bound for the number of iterations required.

This paper develops a Blue-Green Infrastructure (BGI) performance evaluation approach by integrating a Non-dominated Sorting Genetic Algorithm II (NSGA-II) with a detailed hydrodynamic model. The proposed Cost OptimisatioN Framework for Implementing blue-Green infrastructURE (CONFIGURE), with a simplified problem-framing process and efficient genetic operations, can be connected to any flood simulation model. In this study, CONFIGURE is integrated with the CityCAT hydrodynamic model to optimise the locations and combinations of permeable surfaces. Permeable zones with four different levels of spatial discretisation are designed to evaluate their efficiency for 100-year and 30-year return period rainstorms. Overall, the framework performs effectively for the given scenarios. The application of the detailed hydrodynamic model explicitly captures the functioning of permeable features to provide the optimal locations for their deployment. Moreover, the size and the location of the permeable surfaces and the intensity of the rainstorm events are the critical performance parameters for economical BGI deployment.

This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.

Diffusion-based methods have achieved prominent success in generating 2D media. However, accomplishing similar proficiencies for scene-level mesh texturing in 3D spatial applications, e.g., XR/VR, remains constrained, primarily due to the intricate nature of 3D geometry and the necessity for immersive free-viewpoint rendering. In this paper, we propose a novel indoor scene texturing framework, which delivers text-driven texture generation with enchanting details and authentic spatial coherence. The key insight is to first imagine a stylized 360{\deg} panoramic texture from the central viewpoint of the scene, and then propagate it to the rest areas with inpainting and imitating techniques. To ensure meaningful and aligned textures to the scene, we develop a novel coarse-to-fine panoramic texture generation approach with dual texture alignment, which both considers the geometry and texture cues of the captured scenes. To survive from cluttered geometries during texture propagation, we design a separated strategy, which conducts texture inpainting in confidential regions and then learns an implicit imitating network to synthesize textures in occluded and tiny structural areas. Extensive experiments and the immersive VR application on real-world indoor scenes demonstrate the high quality of the generated textures and the engaging experience on VR headsets. Project webpage: //ybbbbt.com/publication/dreamspace

We propose in this paper, STANLEY, a STochastic gradient ANisotropic LangEvin dYnamics, for sampling high dimensional data. With the growing efficacy and potential of Energy-Based modeling, also known as non-normalized probabilistic modeling, for modeling a generative process of different natures of high dimensional data observations, we present an end-to-end learning algorithm for Energy-Based models (EBM) with the purpose of improving the quality of the resulting sampled data points. While the unknown normalizing constant of EBMs makes the training procedure intractable, resorting to Markov Chain Monte Carlo (MCMC) is in general a viable option. Realizing what MCMC entails for the EBM training, we propose in this paper, a novel high dimensional sampling method, based on an anisotropic stepsize and a gradient-informed covariance matrix, embedded into a discretized Langevin diffusion. We motivate the necessity for an anisotropic update of the negative samples in the Markov Chain by the nonlinearity of the backbone of the EBM, here a Convolutional Neural Network. Our resulting method, namely STANLEY, is an optimization algorithm for training Energy-Based models via our newly introduced MCMC method. We provide a theoretical understanding of our sampling scheme by proving that the sampler leads to a geometrically uniformly ergodic Markov Chain. Several image generation experiments are provided in our paper to show the effectiveness of our method.

We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to ``instance-level" and ``category-level" pose estimation methods, our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories. Specifically, we employ a neural process-based meta-learning approach to train an encoder to capture texture and geometry of an object in a latent representation, based on very few RGB-D images and ground-truth keypoints. The latent representation is then used by a simultaneously meta-trained decoder to predict the 6D pose of the object in new images. Furthermore, we propose a novel geometry-aware decoder for the keypoint prediction using a Graph Neural Network (GNN), which explicitly takes geometric constraints specific to each object into consideration. To evaluate our algorithm, extensive experiments are conducted on the \linemod dataset, and on our new fully-annotated synthetic datasets generated from Multiple Categories in Multiple Scenes (MCMS). Experimental results demonstrate that our model performs well on unseen objects with very different shapes and appearances. Remarkably, our model also shows robust performance on occluded scenes although trained fully on data without occlusion. To our knowledge, this is the first work exploring \textbf{cross-category level} 6D pose estimation.

Knowledge graph completion (KGC) aims to discover missing relations of query entities. Current text-based models utilize the entity name and description to infer the tail entity given the head entity and a certain relation. Existing approaches also consider the neighborhood of the head entity. However, these methods tend to model the neighborhood using a flat structure and are only restricted to 1-hop neighbors. In this work, we propose a node neighborhood-enhanced framework for knowledge graph completion. It models the head entity neighborhood from multiple hops using graph neural networks to enrich the head node information. Moreover, we introduce an additional edge link prediction task to improve KGC. Evaluation on two public datasets shows that this framework is simple yet effective. The case study also shows that the model is able to predict explainable predictions.

In this paper, we identify a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g. ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark that consists of both concrete (e.g. holidays and songs) and abstract (e.g. values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need for critical examination of cultural dominance and ethical consideration in their development and deployment. We show two straightforward methods in model development (i.e. pretraining on more diverse data) and deployment (e.g. culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.

Collecting supporting evidence from large corpora of text (e.g., Wikipedia) is of great challenge for open-domain Question Answering (QA). Especially, for multi-hop open-domain QA, scattered evidence pieces are required to be gathered together to support the answer extraction. In this paper, we propose a new retrieval target, hop, to collect the hidden reasoning evidence from Wikipedia for complex question answering. Specifically, the hop in this paper is defined as the combination of a hyperlink and the corresponding outbound link document. The hyperlink is encoded as the mention embedding which models the structured knowledge of how the outbound link entity is mentioned in the textual context, and the corresponding outbound link document is encoded as the document embedding representing the unstructured knowledge within it. Accordingly, we build HopRetriever which retrieves hops over Wikipedia to answer complex questions. Experiments on the HotpotQA dataset demonstrate that HopRetriever outperforms previously published evidence retrieval methods by large margins. Moreover, our approach also yields quantifiable interpretations of the evidence collection process.

北京阿比特科技有限公司