Semi-supervised domain adaptation (SSDA) presents a critical hurdle in computer vision, especially given the frequent scarcity of labeled data in real-world settings. This scarcity often causes foundation models, trained on extensive datasets, to underperform when applied to new domains. AdaEmbed, our newly proposed methodology for SSDA, offers a promising solution to these challenges. Leveraging the potential of unlabeled data, AdaEmbed facilitates the transfer of knowledge from a labeled source domain to an unlabeled target domain by learning a shared embedding space. By generating accurate and uniform pseudo-labels based on the established embedding space, the model overcomes the limitations of conventional SSDA, thus enhancing performance significantly. Our method's effectiveness is validated through extensive experiments on benchmark datasets such as DomainNet, Office-Home, and VisDA-C, where AdaEmbed consistently outperforms all the baselines, setting a new state of the art for SSDA. With its straightforward implementation and high data efficiency, AdaEmbed stands out as a robust and pragmatic solution for real-world scenarios, where labeled data is scarce. To foster further research and application in this area, we are sharing the codebase of our unified framework for semi-supervised domain adaptation.
In the domain of image layout representation learning, the critical process of translating image layouts into succinct vector forms is increasingly significant across diverse applications, such as image retrieval, manipulation, and generation. Most approaches in this area heavily rely on costly labeled datasets and notably lack in adapting their modeling and learning methods to the specific nuances of photographic image layouts. This shortfall makes the learning process for photographic image layouts suboptimal. In our research, we directly address these challenges. We innovate by defining basic layout primitives that encapsulate various levels of layout information and by mapping these, along with their interconnections, onto a heterogeneous graph structure. This graph is meticulously engineered to capture the intricate layout information within the pixel domain explicitly. Advancing further, we introduce novel pretext tasks coupled with customized loss functions, strategically designed for effective self-supervised learning of these layout graphs. Building on this foundation, we develop an autoencoder-based network architecture skilled in compressing these heterogeneous layout graphs into precise, dimensionally-reduced layout representations. Additionally, we introduce the LODB dataset, which features a broader range of layout categories and richer semantics, serving as a comprehensive benchmark for evaluating the effectiveness of layout representation learning methods. Our extensive experimentation on this dataset demonstrates the superior performance of our approach in the realm of photographic image layout representation learning.
Semantic segmentation of high-resolution remote sensing imagery (HRSI) suffers from the domain shift, resulting in poor performance of the model in another unseen domain. Unsupervised domain adaptive (UDA) semantic segmentation aims to adapt the semantic segmentation model trained on the labeled source domain to an unlabeled target domain. However, the existing UDA semantic segmentation models tend to align pixels or features based on statistical information related to labels in source and target domain data, and make predictions accordingly, which leads to uncertainty and fragility of prediction results. In this paper, we propose a causal prototype-inspired contrast adaptation (CPCA) method to explore the invariant causal mechanisms between different HRSIs domains and their semantic labels. It firstly disentangles causal features and bias features from the source and target domain images through a causal feature disentanglement module. Then, a causal prototypical contrast module is used to learn domain invariant causal features. To further de-correlate causal and bias features, a causal intervention module is introduced to intervene on the bias features to generate counterfactual unbiased samples. By forcing the causal features to meet the principles of separability, invariance and intervention, CPCA can simulate the causal factors of source and target domains, and make decisions on the target domain based on the causal features, which can observe improved generalization ability. Extensive experiments under three cross-domain tasks indicate that CPCA is remarkably superior to the state-of-the-art methods.
Despite remarkable progress, existing multimodal large language models (MLLMs) are still inferior in granular visual recognition. Contrary to previous works, we study this problem from the perspective of image resolution, and reveal that a combination of low- and high-resolution visual features can effectively mitigate this shortcoming. Based on this observation, we propose a novel and efficient method for MLLMs, termed Mixture-of-Resolution Adaptation (MRA). In particular, MRA adopts two visual pathways for images with different resolutions, where high-resolution visual information is embedded into the low-resolution pathway via the novel mixture-of-resolution adapters (MR-Adapters). This design also greatly reduces the input sequence length of MLLMs. To validate MRA, we apply it to a recent MLLM called LLaVA, and term the new model LLaVA-HR. We conduct extensive experiments on 11 vision-language (VL) tasks, which show that LLaVA-HR outperforms existing MLLMs on 8 VL tasks, e.g., +9.4% on TextVQA. More importantly, both training and inference of LLaVA-HR remain efficient with MRA, e.g., 20 training hours and 3$\times$ inference speed than LLaVA-1.5. Source codes are released at: //github.com/luogen1996/LLaVA-HR.
Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typical consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon an off-the-shell LLM, CoAT significantly improves the goal progress compared to standard context modeling. To further facilitate the research in this line, we construct a benchmark Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 200M model on our AitZ dataset achieves on par performance with CogAgent-Chat-18B.
Autonomous systems, including generative AI, have been adopted faster than previous digital innovations. Their impact on society might as well be more profound, with a radical restructuring of the economy of knowledge and dramatic consequences for social and institutional balances. Different attitudes to control these systems have emerged rooted in the classical pillars of legal systems, proprietary rights, and social responsibility. We show how an illusion of control might be guiding governments and regulators, while autonomous systems might be driving us to inescapable delusion.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.