亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this note, we investigate the non-identifiability of the multivariate unified skew-normal distribution under permutation of its latent variables. We show that the non-identifiability issue also holds with other parametrizations and extends to the family of unified skew-elliptical distributions and more generally to selection distibutions. We provide several suggestions to make the unified skew-normal model identifiable and describe various sub-models that are identifiable.

相關內容

We discuss applications of exact structures and relative homological algebra to the study of invariants of multiparameter persistence modules. This paper is mostly expository, but does contain a pair of novel results. Over finite posets, classical arguments about the relative projective modules of an exact structure make use of Auslander-Reiten theory. One of our results establishes a new adjunction which allows us to "lift" these arguments to certain infinite posets over which Auslander-Reiten theory is not available. We give several examples of this lifting, in particular highlighting the non-existence and existence of resolutions by upsets when working with finitely presentable representations of the plane and of the closure of the positive quadrant, respectively. We then restrict our attention to finite posets. In this setting, we discuss the relationship between the global dimension of an exact structure and the representation dimension of the incidence algebra of the poset. We conclude with our second novel contribution. This is an explicit description of the irreducible morphisms between relative projective modules for several exact structures which have appeared previously in the literature.

An increasingly common viewpoint is that protein dynamics data sets reside in a non-linear subspace of low conformational energy. Ideal data analysis tools for such data sets should therefore account for such non-linear geometry. The Riemannian geometry setting can be suitable for a variety of reasons. First, it comes with a rich structure to account for a wide range of geometries that can be modelled after an energy landscape. Second, many standard data analysis tools initially developed for data in Euclidean space can also be generalised to data on a Riemannian manifold. In the context of protein dynamics, a conceptual challenge comes from the lack of a suitable smooth manifold and the lack of guidelines for constructing a smooth Riemannian structure based on an energy landscape. In addition, computational feasibility in computing geodesics and related mappings poses a major challenge. This work considers these challenges. The first part of the paper develops a novel local approximation technique for computing geodesics and related mappings on Riemannian manifolds in a computationally feasible manner. The second part constructs a smooth manifold of point clouds modulo rigid body group actions and a Riemannian structure that is based on an energy landscape for protein conformations. The resulting Riemannian geometry is tested on several data analysis tasks relevant for protein dynamics data. It performs exceptionally well on coarse-grained molecular dynamics simulated data. In particular, the geodesics with given start- and end-points approximately recover corresponding molecular dynamics trajectories for proteins that undergo relatively ordered transitions with medium sized deformations. The Riemannian protein geometry also gives physically realistic summary statistics and retrieves the underlying dimension even for large-sized deformations within seconds on a laptop.

Matrices are built and designed by applying procedures from lower order matrices. Matrix tensor products, direct sums or multiplication of matrices are such procedures and a matrix built from these is said to be a {\em separable} matrix. A {\em non-separable} matrix is a matrix which is not separable and is often referred to as {\em an entangled matrix}. The matrices built may retain properties of the lower order matrices or may also acquire new desired properties not inherent in the constituents. Here design methods for non-separable matrices of required types are derived. These can retain properties of lower order matrices or have new desirable properties. Infinite series of required non-separable matrices are constructible by the general methods. Non-separable matrices are required for applications and other uses; they can capture the structure in a unique way and thus perform much better than separable matrices. General new methods are developed with which to construct {\em multidimensional entangled paraunitary matrices}; these have applications for wavelet and filter bank design. The constructions are in addition used to design new systems of non-separable unitary matrices; these have applications in quantum information theory. Some consequences include the design of full diversity constellations of unitary matrices, which are used in MIMO systems, and methods to design infinite series of special types of Hadamard matrices.

In this work, we present a novel method for hierarchically variable clustering using singular value decomposition. Our proposed approach provides a non-parametric solution to identify block diagonal patterns in covariance (correlation) matrices, thereby grouping variables according to their dissimilarity. We explain the methodology and outline the incorporation of linkage functions to assess dissimilarities between clusters. To validate the efficiency of our method, we perform both a simulation study and an analysis of real-world data. Our findings show the approach's robustness. We conclude by discussing potential extensions and future directions for research in this field. Supplementary materials for this article can be accessed online.

Data sets of multivariate normal distributions abound in many scientific areas like diffusion tensor imaging, structure tensor computer vision, radar signal processing, machine learning, just to name a few. In order to process those normal data sets for downstream tasks like filtering, classification or clustering, one needs to define proper notions of dissimilarities between normals and paths joining them. The Fisher-Rao distance defined as the Riemannian geodesic distance induced by the Fisher information metric is such a principled metric distance which however is not known in closed-form excepts for a few particular cases. In this work, we first report a fast and robust method to approximate arbitrarily finely the Fisher-Rao distance between multivariate normal distributions. Second, we introduce a class of distances based on diffeomorphic embeddings of the normal manifold into a submanifold of the higher-dimensional symmetric positive-definite cone corresponding to the manifold of centered normal distributions. We show that the projective Hilbert distance on the cone yields a metric on the embedded normal submanifold and we pullback that cone distance with its associated straight line Hilbert cone geodesics to obtain a distance and smooth paths between normal distributions. Compared to the Fisher-Rao distance approximation, the pullback Hilbert cone distance is computationally light since it requires to compute only the extreme minimal and maximal eigenvalues of matrices. Finally, we show how to use those distances in clustering tasks.

This article presents a high-order accurate numerical method for the evaluation of singular volume integral operators, with attention focused on operators associated with the Poisson and Helmholtz equations in two dimensions. Following the ideas of the density interpolation method for boundary integral operators, the proposed methodology leverages Green's third identity and a local polynomial interpolant of the density function to recast the volume potential as a sum of single- and double-layer potentials and a volume integral with a regularized (bounded or smoother) integrand. The layer potentials can be accurately and efficiently evaluated everywhere in the plane by means of existing methods (e.g.\ the density interpolation method), while the regularized volume integral can be accurately evaluated by applying elementary quadrature rules. We describe the method both for domains meshed by mapped quadrilaterals and triangles, introducing for each case (i) well-conditioned methods for the production of certain requisite source polynomial interpolants and (ii) efficient translation formulae for polynomial particular solutions. Compared to straightforwardly computing corrections for every singular and nearly-singular volume target, the method significantly reduces the amount of required specialized quadrature by pushing all singular and near-singular corrections to near-singular layer-potential evaluations at target points in a small neighborhood of the domain boundary. Error estimates for the regularization and quadrature approximations are provided. The method is compatible with well-established fast algorithms, being both efficient not only in the online phase but also to set-up. Numerical examples demonstrate the high-order accuracy and efficiency of the proposed methodology.

In this paper, we develop an efficient spectral-Galerkin-type search extension method (SGSEM) for finding multiple solutions to semilinear elliptic boundary value problems. This method constructs effective initial data for multiple solutions based on the linear combinations of some eigenfunctions of the corresponding linear eigenvalue problem, and thus takes full advantage of the traditional search extension method in constructing initials for multiple solutions. Meanwhile, it possesses a low computational cost and high accuracy due to the employment of an interpolated coefficient Legendre-Galerkin spectral discretization. By applying the Schauder's fixed point theorem and other technical strategies, the existence and spectral convergence of the numerical solution corresponding to a specified true solution are rigorously proved. In addition, the uniqueness of the numerical solution in a sufficiently small neighborhood of each specified true solution is strictly verified. Numerical results demonstrate the feasibility and efficiency of our algorithm and present different types of multiple solutions.

We study the problem of estimating non-linear functionals of discrete distributions in the context of local differential privacy. The initial data $x_1,\ldots,x_n \in [K]$ are supposed i.i.d. and distributed according to an unknown discrete distribution $p = (p_1,\ldots,p_K)$. Only $\alpha$-locally differentially private (LDP) samples $z_1,...,z_n$ are publicly available, where the term 'local' means that each $z_i$ is produced using one individual attribute $x_i$. We exhibit privacy mechanisms (PM) that are interactive (i.e. they are allowed to use already published confidential data) or non-interactive. We describe the behavior of the quadratic risk for estimating the power sum functional $F_{\gamma} = \sum_{k=1}^K p_k^{\gamma}$, $\gamma >0$ as a function of $K, \, n$ and $\alpha$. In the non-interactive case, we study two plug-in type estimators of $F_{\gamma}$, for all $\gamma >0$, that are similar to the MLE analyzed by Jiao et al. (2017) in the multinomial model. However, due to the privacy constraint the rates we attain are slower and similar to those obtained in the Gaussian model by Collier et al. (2020). In the interactive case, we introduce for all $\gamma >1$ a two-step procedure which attains the faster parametric rate $(n \alpha^2)^{-1/2}$ when $\gamma \geq 2$. We give lower bounds results over all $\alpha$-LDP mechanisms and all estimators using the private samples.

Recently established, directed dependence measures for pairs $(X,Y)$ of random variables build upon the natural idea of comparing the conditional distributions of $Y$ given $X=x$ with the marginal distribution of $Y$. They assign pairs $(X,Y)$ values in $[0,1]$, the value is $0$ if and only if $X,Y$ are independent, and it is $1$ exclusively for $Y$ being a function of $X$. Here we show that comparing randomly drawn conditional distributions with each other instead or, equivalently, analyzing how sensitive the conditional distribution of $Y$ given $X=x$ is on $x$, opens the door to constructing novel families of dependence measures $\Lambda_\varphi$ induced by general convex functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, containing, e.g., Chatterjee's coefficient of correlation as special case. After establishing additional useful properties of $\Lambda_\varphi$ we focus on continuous $(X,Y)$, translate $\Lambda_\varphi$ to the copula setting, consider the $L^p$-version and establish an estimator which is strongly consistent in full generality. A real data example and a simulation study illustrate the chosen approach and the performance of the estimator. Complementing the afore-mentioned results, we show how a slight modification of the construction underlying $\Lambda_\varphi$ can be used to define new measures of explainability generalizing the fraction of explained variance.

The purpose of the paper is to provide a characterization of the error of the best polynomial approximation of composite functions in weighted spaces. Such a characterization is essential for the convergence analysis of numerical methods applied to non-linear problems or for numerical approaches that make use of regularization techniques to cure low smoothness of the solution. This result is obtained through an estimate of the derivatives of composite functions in weighted uniform norm.

北京阿比特科技有限公司