Menu system design for user interfaces is a challenging task involving many design options and various human factors. For example, one crucial factor that designers need to consider is the semantic and systematic relation of menu commands. However, capturing these relations can be challenging due to limited available resources. Large language models can be helpful in this regard, using their pre-training knowledge to design and refine menu systems. In this paper, we propose MenuCraft, an AI-assisted designer for menu design that enables collaboration between the designer and a dialogue system to design menus. MenuCraft offers an interactive language-based menu design tool that simplifies the menu design process and enables easy customization of design options. MenuCraft supports a variety of interactions through dialog that allows performing in-context learning.
Effective code optimization in compilers is crucial for computer and software engineering. The success of these optimizations primarily depends on the selection and ordering of the optimization passes applied to the code. While most compilers rely on a fixed sequence of optimization passes, current methods to find the optimal sequence either employ impractically slow search algorithms or learning methods that struggle to generalize to code unseen during training. We introduce CompilerDream, a model-based reinforcement learning approach to general code optimization. CompilerDream comprises a compiler world model that accurately simulates the intrinsic properties of optimization passes and an agent trained on this model to produce effective optimization strategies. By training on a large-scale program dataset, CompilerDream is equipped to serve as a general code optimizer across various application scenarios and source-code languages. Our extensive experiments first highlight CompilerDream's strong optimization capabilities for autotuning, where it leads the CompilerGym leaderboard. More importantly, the zero-shot generalization ability of large-scale trained compiler world model and agent, excels across diverse datasets, surpassing LLVM's built-in optimizations and other state-of-the-art methods in both settings of value prediction and end-to-end code optimization.
In digital circuit design, testbenches constitute the cornerstone of simulation-based hardware verification. Traditional methodologies for testbench generation during simulation-based hardware verification still remain partially manual, resulting in inefficiencies in testing various scenarios and requiring expensive time from designers. Large Language Models (LLMs) have demonstrated their potential in automating the circuit design flow. However, directly applying LLMs to generate testbenches suffers from a low pass rate. To address this challenge, we introduce AutoBench, the first LLM-based testbench generator for digital circuit design, which requires only the description of the design under test (DUT) to automatically generate comprehensive testbenches. In AutoBench, a hybrid testbench structure and a self-checking system are realized using LLMs. To validate the generated testbenches, we also introduce an automated testbench evaluation framework to evaluate the quality of generated testbenches from multiple perspectives. Experimental results demonstrate that AutoBench achieves a 57% improvement in the testbench pass@1 ratio compared with the baseline that directly generates testbenches using LLMs. For 75 sequential circuits, AutoBench successfully has a 3.36 times testbench pass@1 ratio compared with the baseline. The source codes and experimental results are open-sourced at this link: //github.com/AutoBench/AutoBench
Sequential recommender system (SRS) predicts the next items that users may prefer based on user historical interaction sequences. Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS. Despite their attractive performance, existing LLM-based SRS still exhibit some limitations, including neglecting intra-item relations, ignoring long-term collaborative knowledge and using inflexible architecture designs for adaption. To alleviate these issues, we propose an LLM-based SRS named MixRec. Built on top of coarse-grained adaption for capturing inter-item relations, MixRec is further enhanced with (1) context masking that models intra-item relations to help LLM better understand token and item semantics in the context of SRS, (2) collaborative knowledge injection that helps LLM incorporate long-term collaborative knowledge, and (3) a dynamic adaptive mixture-of-experts design that can flexibly choose expert architectures based on Bayesian optimization to better incorporate different sequential information. Extensive experiments demonstrate that MixRec can effectively handle sequential recommendation in a dynamic and adaptive manner.
Sequential recommendation aims to estimate how a user's interests evolve over time via uncovering valuable patterns from user behavior history. Many previous sequential models have solely relied on users' historical information to model the evolution of their interests, neglecting the crucial role that future information plays in accurately capturing these dynamics. However, effectively incorporating future information in sequential modeling is non-trivial since it is impossible to make the current-step prediction for any target user by leveraging his future data. In this paper, we propose a novel framework of sequential recommendation called Look into the Future (LIFT), which builds and leverages the contexts of sequential recommendation. In LIFT, the context of a target user's interaction is represented based on i) his own past behaviors and ii) the past and future behaviors of the retrieved similar interactions from other users. As such, the learned context will be more informative and effective in predicting the target user's behaviors in sequential recommendation without temporal data leakage. Furthermore, in order to exploit the intrinsic information embedded within the context itself, we introduce an innovative pretraining methodology incorporating behavior masking. In our extensive experiments on five real-world datasets, LIFT achieves significant performance improvement on click-through rate prediction and rating prediction tasks in sequential recommendation over strong baselines, demonstrating that retrieving and leveraging relevant contexts from the global user pool greatly benefits sequential recommendation. The experiment code is provided at //anonymous.4open.science/r/LIFT-277C/Readme.md.
Automated biomechanical testing has great potential for the development of VR applications, as initial insights into user behaviour can be gained in silico early in the design process. In particular, it allows prediction of user movements and ergonomic variables, such as fatigue, prior to conducting user studies. However, there is a fundamental disconnect between simulators hosting state-of-the-art biomechanical user models and simulators used to develop and run VR applications. Existing user simulators often struggle to capture the intricacies of real-world VR applications, reducing ecological validity of user predictions. In this paper, we introduce SIM2VR, a system that aligns user simulation with a given VR application by establishing a continuous closed loop between the two processes. This, for the first time, enables training simulated users directly in the same VR application that real users interact with. We demonstrate that SIM2VR can predict differences in user performance, ergonomics and strategies in a fast-paced, dynamic arcade game. In order to expand the scope of automated biomechanical testing beyond simple visuomotor tasks, advances in cognitive models and reward function design will be needed.
Analog front-end design heavily relies on specialized human expertise and costly trial-and-error simulations, which motivated many prior works on analog design automation. However, efficient and effective exploration of the vast and complex design space remains constrained by the time-consuming nature of SPICE simulations, making effective design automation a challenging endeavor. In this paper, we introduce INSIGHT, a GPU-powered, technology-agnostic, effective universal neural simulator in the analog front-end design automation loop. INSIGHT accurately predicts the performance metrics of analog circuits across various technologies with just a few microseconds of inference time. Notably, its autoregressive capabilities enable INSIGHT to accurately predict simulation-costly critical transient specifications leveraging less expensive performance metric information. The low cost and high fidelity feature make INSIGHT a good substitute for standard simulators in analog front-end optimization frameworks. INSIGHT is compatible with any optimization framework, facilitating enhanced design space exploration for sample efficiency through sophisticated offline learning and adaptation techniques. Our experiments demonstrate that INSIGHT-M, a model-based batch reinforcement learning sizing framework with INSIGHT as the accurate surrogate, only requires < 20 real-time simulations with 100-1000x lower simulation costs and significant speedup over existing sizing methods.
Process models are frequently used in software engineering to describe business requirements, guide software testing and control system improvement. However, traditional process modeling methods often require the participation of numerous experts, which is expensive and time-consuming. Therefore, the exploration of a more efficient and cost-effective automated modeling method has emerged as a focal point in current research. This article explores a framework for automatically generating process models with multi-agent orchestration (MAO), aiming to enhance the efficiency of process modeling and offer valuable insights for domain experts. Our framework MAO leverages large language models as the cornerstone for multi-agent, employing an innovative prompt strategy to ensure efficient collaboration among multi-agent. Specifically, 1) generation. The first phase of MAO is to generate a slightly rough process model from the text description; 2) refinement. The agents would continuously refine the initial process model through multiple rounds of dialogue; 3) reviewing. Large language models are prone to hallucination phenomena among multi-turn dialogues, so the agents need to review and repair semantic hallucinations in process models; 4) testing. The representation of process models is diverse. Consequently, the agents utilize external tools to test whether the generated process model contains format errors, namely format hallucinations, and then adjust the process model to conform to the output paradigm. The experiments demonstrate that the process models generated by our framework outperform existing methods and surpass manual modeling by 89%, 61%, 52%, and 75% on four different datasets, respectively.
Although the security testing of Web systems can be automated by generating crafted inputs, solutions to automate the test oracle, i.e., distinguishing correct from incorrect outputs, remain preliminary. Specifically, previous work has demonstrated the potential of metamorphic testing; indeed, security failures can be determined by metamorphic relations that turn valid inputs into malicious inputs. However, without further guidance, metamorphic relations are typically executed on a large set of inputs, which is time-consuming and thus makes metamorphic testing impractical. We propose AIM, an approach that automatically selects inputs to reduce testing costs while preserving vulnerability detection capabilities. AIM includes a clustering-based black box approach, to identify similar inputs based on their security properties. It also relies on a novel genetic algorithm able to efficiently select diverse inputs while minimizing their total cost. Further, it contains a problem-reduction component to reduce the search space and speed up the minimization process. We evaluated the effectiveness of AIM on two well-known Web systems, Jenkins and Joomla, with documented vulnerabilities. We compared AIM's results with four baselines. Overall, AIM reduced metamorphic testing time by 84% for Jenkins and 82% for Joomla, while preserving vulnerability detection. Furthermore, AIM outperformed all the considered baselines regarding vulnerability coverage.
Reverse engineering 3D computer-aided design (CAD) models from images is an important task for many downstream applications including interactive editing, manufacturing, architecture, robotics, etc. The difficulty of the task lies in vast representational disparities between the CAD output and the image input. CAD models are precise, programmatic constructs that involves sequential operations combining discrete command structure with continuous attributes -- making it challenging to learn and optimize in an end-to-end fashion. Concurrently, input images introduce inherent challenges such as photo-metric variability and sensor noise, complicating the reverse engineering process. In this work, we introduce a novel approach that conditionally factorizes the task into two sub-problems. First, we leverage large foundation models, particularly GPT-4V, to predict the global discrete base structure with semantic information. Second, we propose TrAssembler that conditioned on the discrete structure with semantics predicts the continuous attribute values. To support the training of our TrAssembler, we further constructed an annotated CAD dataset of common objects from ShapeNet. Putting all together, our approach and data demonstrate significant first steps towards CAD-ifying images in the wild. Our project page: //anonymous123342.github.io/
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.