亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Humans have remarkable capacity to reason abductively and hypothesize about what lies beyond the literal content of an image. By identifying concrete visual clues scattered throughout a scene, we almost can't help but draw probable inferences beyond the literal scene based on our everyday experience and knowledge about the world. For example, if we see a "20 mph" sign alongside a road, we might assume the street sits in a residential area (rather than on a highway), even if no houses are pictured. Can machines perform similar visual reasoning? We present Sherlock, an annotated corpus of 103K images for testing machine capacity for abductive reasoning beyond literal image contents. We adopt a free-viewing paradigm: participants first observe and identify salient clues within images (e.g., objects, actions) and then provide a plausible inference about the scene, given the clue. In total, we collect 363K (clue, inference) pairs, which form a first-of-its-kind abductive visual reasoning dataset. Using our corpus, we test three complementary axes of abductive reasoning. We evaluate the capacity of models to: i) retrieve relevant inferences from a large candidate corpus; ii) localize evidence for inferences via bounding boxes, and iii) compare plausible inferences to match human judgments on a newly-collected diagnostic corpus of 19K Likert-scale judgments. While we find that fine-tuning CLIP-RN50x64 with a multitask objective outperforms strong baselines, significant headroom exists between model performance and human agreement. Data, models, and leaderboard available at //visualabduction.com/

相關內容

Games played in the last round of a round-robin tournament inspire match-fixing or tacit collusion if the two opposing teams can benefit from a particular result at the expense of other teams. In the case of four teams, the current study identifies all these situations caused by using head-to-head records as the primary tie-breaking principle. Simulations based on the 2016 UEFA European Football Championship reveal that the official tie-breaking policy substantially increases the risk of collusion, but it can be mitigated by choosing an optimal order of matches. Following the proposed schedule improves the competitiveness of the two games played in the last round and requires no reform on the format of the competition.

We present a method for generating possible proofs of a query with respect to a given Answer Set Programming (ASP) rule set using an abductive process where the space of abducibles is automatically constructed just from the input rules alone. Given a (possibly empty) set of user provided facts, our method infers any additional facts that may be needed for the entailment of a query and then outputs these extra facts, without the user needing to explicitly specify the space of all abducibles. We also present a method to generate a set of directed edges corresponding to the justification graph for the query. Furthermore, through different forms of implicit term substitution, our method can take user provided facts into account and suitably modify the abductive solutions. Past work on abduction has been primarily based on goal directed methods. However these methods can result in solvers that are not truly declarative. Much less work has been done on realizing abduction in a bottom up solver like the Clingo ASP solver. We describe novel ASP programs which can be run directly in Clingo to yield the abductive solutions and directed edge sets without needing to modify the underlying solving engine.

Production-level workflows for producing convincing 3D dynamic human faces have long relied on an assortment of labor-intensive tools for geometry and texture generation, motion capture and rigging, and expression synthesis. Recent neural approaches automate individual components but the corresponding latent representations cannot provide artists with explicit controls as in conventional tools. In this paper, we present a new learning-based, video-driven approach for generating dynamic facial geometries with high-quality physically-based assets. For data collection, we construct a hybrid multiview-photometric capture stage, coupling with ultra-fast video cameras to obtain raw 3D facial assets. We then set out to model the facial expression, geometry and physically-based textures using separate VAEs where we impose a global MLP based expression mapping across the latent spaces of respective networks, to preserve characteristics across respective attributes. We also model the delta information as wrinkle maps for the physically-based textures, achieving high-quality 4K dynamic textures. We demonstrate our approach in high-fidelity performer-specific facial capture and cross-identity facial motion retargeting. In addition, our multi-VAE-based neural asset, along with the fast adaptation schemes, can also be deployed to handle in-the-wild videos. Besides, we motivate the utility of our explicit facial disentangling strategy by providing various promising physically-based editing results with high realism. Comprehensive experiments show that our technique provides higher accuracy and visual fidelity than previous video-driven facial reconstruction and animation methods.

Boosted trees is a dominant ML model, exhibiting high accuracy. However, boosted trees are hardly intelligible, and this is a problem whenever they are used in safety-critical applications. Indeed, in such a context, rigorous explanations of the predictions made are expected. Recent work have shown how subset-minimal abductive explanations can be derived for boosted trees, using automated reasoning techniques. However, the generation of such well-founded explanations is intractable in the general case. To improve the scalability of their generation, we introduce the notion of tree-specific explanation for a boosted tree. We show that tree-specific explanations are abductive explanations that can be computed in polynomial time. We also explain how to derive a subset-minimal abductive explanation from a tree-specific explanation. Experiments on various datasets show the computational benefits of leveraging tree-specific explanations for deriving subset-minimal abductive explanations.

Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Existing Collaborative Filtering (CF) methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the associative relevance patterns in data, so that a user embedding can be matched with relevant item embeddings using designed or learned similarity functions. However, as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of cognitive reasoning in data. In this paper, we propose to advance Collaborative Filtering (CF) to Collaborative Reasoning (CR), which means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other. Technically, we propose a Neural Collaborative Reasoning (NCR) framework to bridge learning and reasoning. Specifically, we integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives, and logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a modularized reasoning architecture, which learns logical operations such as AND ($\wedge$), OR ($\vee$) and NOT ($\neg$) as neural modules for implication reasoning ($\rightarrow$). In this way, logical expressions can be equivalently organized as neural networks, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on real-world datasets verified the advantages of our framework compared with both shallow, deep and reasoning models.

Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.

北京阿比特科技有限公司