亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For the nonparametric regression models with covariates contaminated with normal measurement errors, this paper proposes an extrapolation algorithm to estimate the nonparametric regression functions. By applying the conditional expectation directly to the kernel-weighted least squares of the deviations between the local linear approximation and the observed responses, the proposed algorithm successfully bypasses the simulation step needed in the classical simulation extrapolation method, thus significantly reducing the computational time. It is noted that the proposed method also provides an exact form of the extrapolation function, but the extrapolation estimate generally cannot be obtained by simply setting the extrapolation variable to negative one in the fitted extrapolation function if the bandwidth is less than the standard deviation of the measurement error. Large sample properties of the proposed estimation procedure are discussed, as well as simulation studies and a real data example being conducted to illustrate its applications.

相關內容

Isotonic distributional regression (IDR) is a powerful nonparametric technique for the estimation of conditional distributions under order restrictions. In a nutshell, IDR learns conditional distributions that are calibrated, and simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to isotonicity constraints in terms of a partial order on the covariate space. Nonparametric isotonic quantile regression and nonparametric isotonic binary regression emerge as special cases. For prediction, we propose an interpolation method that generalizes extant specifications under the pool adjacent violators algorithm. We recommend the use of IDR as a generic benchmark technique in probabilistic forecast problems, as it does not involve any parameter tuning nor implementation choices, except for the selection of a partial order on the covariate space. The method can be combined with subsample aggregation, with the benefits of smoother regression functions and gains in computational efficiency. In a simulation study, we compare methods for distributional regression in terms of the continuous ranked probability score (CRPS) and $L_2$ estimation error, which are closely linked. In a case study on raw and postprocessed quantitative precipitation forecasts from a leading numerical weather prediction system, IDR is competitive with state of the art techniques.

In this paper, we consider a class of possibly nonconvex, nonsmooth and non-Lipschitz optimization problems arising in many contemporary applications such as machine learning, variable selection and image processing. To solve this class of problems, we propose a proximal gradient method with extrapolation and line search (PGels). This method is developed based on a special potential function and successfully incorporates both extrapolation and non-monotone line search, which are two simple and efficient accelerating techniques for the proximal gradient method. Thanks to the line search, this method allows more flexibilities in choosing the extrapolation parameters and updates them adaptively at each iteration if a certain line search criterion is not satisfied. Moreover, with proper choices of parameters, our PGels reduces to many existing algorithms. We also show that, under some mild conditions, our line search criterion is well defined and any cluster point of the sequence generated by PGels is a stationary point of our problem. In addition, by assuming the Kurdyka-${\L}$ojasiewicz exponent of the objective in our problem, we further analyze the local convergence rate of two special cases of PGels, including the widely used non-monotone proximal gradient method as one case. Finally, we conduct some numerical experiments for solving the $\ell_1$ regularized logistic regression problem and the $\ell_{1\text{-}2}$ regularized least squares problem. Our numerical results illustrate the efficiency of PGels and show the potential advantage of combining two accelerating techniques.

This article describes an R package bqror that estimates Bayesian quantile regression for ordinal models introduced in \citet{Rahman-2016}. The paper classifies ordinal models into two types and offers two computationally efficient, yet simple, MCMC algorithms for estimating ordinal quantile regression. The generic ordinal model with more than 3 outcomes (labeled $OR_{I}$ model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm. Whereas an ordinal model with exactly 3 outcomes (labeled $OR_{II}$ model) is estimated using Gibbs sampling only. In line with the Bayesian literature, we suggest using marginal likelihood for comparing alternative quantile regression models and explain how to calculate the same. The models and their estimation procedures are illustrated via multiple simulation studies and implemented in the two applications presented in \citet{Rahman-2016}. The article also describes several other functions contained within the bqror package, which are necessary for estimation, inference, and assessing model fit.

Shape-constrained nonparametric regression is a growing area in econometrics, statistics, operations research, machine learning and related fields. In the field of productivity and efficiency analysis, recent developments in the multivariate convex regression and related techniques such as convex quantile regression and convex expectile regression have bridged the long-standing gap between the conventional deterministic-nonparametric and stochastic-parametric methods. Unfortunately, the heavy computational burden and the lack of powerful, reliable, and fully open access computational package has slowed down the diffusion of these advanced estimation techniques to the empirical practice. The purpose of the Python package pyStoNED is to address this challenge by providing a freely available and user-friendly tool for the multivariate convex regression, convex quantile regression, convex expectile regression, isotonic regression, stochastic nonparametric envelopment of data, and related methods. This paper presents a tutorial of the pyStoNED package and illustrates its application, focusing on the estimation of frontier cost and production functions.

Working with so-called linkages allows to define a copula-based, $[0,1]$-valued multivariate dependence measure $\zeta^1(\boldsymbol{X},Y)$ quantifying the scale-invariant extent of dependence of a random variable $Y$ on a $d$-dimensional random vector $\boldsymbol{X}=(X_1,\ldots,X_d)$ which exhibits various good and natural properties. In particular, $\zeta^1(\boldsymbol{X},Y)=0$ if and only if $\boldsymbol{X}$ and $Y$ are independent, $\zeta^1(\boldsymbol{X},Y)$ is maximal exclusively if $Y$ is a function of $\boldsymbol{X}$, and ignoring one or several coordinates of $\boldsymbol{X}$ can not increase the resulting dependence value. After introducing and analyzing the metric $D_1$ underlying the construction of the dependence measure and deriving examples showing how much information can be lost by only considering all pairwise dependence values $\zeta^1(X_1,Y),\ldots,\zeta^1(X_d,Y)$ we derive a so-called checkerboard estimator for $\zeta^1(\boldsymbol{X},Y)$ and show that it is strongly consistent in full generality, i.e., without any smoothness restrictions on the underlying copula. Some simulations illustrating the small sample performance of the estimator complement the established theoretical results.

Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold so as to not only reconstruct the unknown information, but also to be capable of performing fluid reasoning about future scenarios in real time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data back to the high-dimensional manifold, so as to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.

Publication bias is a major concern in conducting systematic reviews and meta-analyses. Various sensitivity analysis or bias-correction methods have been developed based on selection models and they have some advantages over the widely used bias-correction method of the trim-and-fill method. However, likelihood methods based on selection models may have difficulty in obtaining precise estimates and reasonable confidence intervals or require a complicated sensitivity analysis process. In this paper, we develop a simple publication bias adjustment method utilizing information on conducted but still unpublished trials from clinical trial registries. We introduce an estimating equation for parameter estimation in the selection function by regarding the publication bias issue as a missing data problem under missing not at random. With the estimated selection function, we introduce the inverse probability weighting (IPW) method to estimate the overall mean across studies. Furthermore, the IPW versions of heterogeneity measures such as the between-study variance and the I2 measure are proposed. We propose methods to construct asymptotic confidence intervals and suggest intervals based on parametric bootstrapping as an alternative. Through numerical experiments, we observed that the estimators successfully eliminate biases and the confidence intervals had empirical coverage probabilities close to the nominal level. On the other hand, the asymptotic confidence interval is much wider in some scenarios than the bootstrap confidence interval. Therefore, the latter is recommended for practical use.

In many contemporary applications, large amounts of unlabeled data are readily available while labeled examples are limited. There has been substantial interest in semi-supervised learning (SSL) which aims to leverage unlabeled data to improve estimation or prediction. However, current SSL literature focuses primarily on settings where labeled data is selected randomly from the population of interest. Non-random sampling, while posing additional analytical challenges, is highly applicable to many real world problems. Moreover, no SSL methods currently exist for estimating the prediction performance of a fitted model under non-random sampling. In this paper, we propose a two-step SSL procedure for evaluating a prediction rule derived from a working binary regression model based on the Brier score and overall misclassification rate under stratified sampling. In step I, we impute the missing labels via weighted regression with nonlinear basis functions to account for nonrandom sampling and to improve efficiency. In step II, we augment the initial imputations to ensure the consistency of the resulting estimators regardless of the specification of the prediction model or the imputation model. The final estimator is then obtained with the augmented imputations. We provide asymptotic theory and numerical studies illustrating that our proposals outperform their supervised counterparts in terms of efficiency gain. Our methods are motivated by electronic health records (EHR) research and validated with a real data analysis of an EHR-based study of diabetic neuropathy.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.

北京阿比特科技有限公司