亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies model checking for general parametric regression models with no dimension reduction structure on the high-dimensional vector of predictors. Using existing test as an initial test, this paper combines the sample-splitting technique and conditional studentization approach to construct a COnditionally Studentized Test(COST). Unlike existing tests, whether the initial test is global or local smoothing-based, and whether the dimension of the predictor vector and the number of parameters are fixed, or diverge at a certain rate as the sample size goes to infinity, the proposed test always has a normal weak limit under the null hypothesis. Further, the test can detect the local alternatives distinct from the null hypothesis at the fastest possible rate of convergence in hypothesis testing. We also discuss the optimal sample splitting in power performance. The numerical studies offer information on its merits and limitations in finite sample cases. As a generic methodology, it could be applied to other testing problems.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 高斯過程回歸 · Processing(編程語言) · MoDELS · Learning ·
2023 年 4 月 26 日

Estimating state of health is a critical function of a battery management system but remains challenging due to the variability of operating conditions and usage requirements of real applications. As a result, techniques based on fitting equivalent circuit models may exhibit inaccuracy at extremes of performance and over long-term ageing, or instability of parameter estimates. Pure data-driven techniques, on the other hand, suffer from lack of generality beyond their training dataset. In this paper, we propose a hybrid approach combining data- and model-driven techniques for battery health estimation. Specifically, we demonstrate a Bayesian data-driven method, Gaussian process regression, to estimate model parameters as functions of states, operating conditions, and lifetime. Computational efficiency is ensured through a recursive approach yielding a unified joint state-parameter estimator that learns parameter dynamics from data and is robust to gaps and varying operating conditions. Results show the efficacy of the method, on both simulated and measured data, including accurate estimates and forecasts of battery capacity and internal resistance. This opens up new opportunities to understand battery ageing in real applications.

This paper focuses on the study of the order of power series that are linear combinations of a given finite set of power series. The order of a formal power series, known as $\textrm{ord}(f)$, is defined as the minimum exponent of $x$ that has a non-zero coefficient in $f(x)$. Our first result is that the order of the Wronskian of these power series is equivalent up to a polynomial factor, to the maximum order which occurs in the linear combination of these power series. This implies that the Wronskian approach used in (Kayal and Saha, TOCT'2012) to upper bound the order of sum of square roots is optimal up to a polynomial blowup. We also demonstrate similar upper bounds, similar to those of (Kayal and Saha, TOCT'2012), for the order of power series in a variety of other scenarios. We also solve a special case of the inequality testing problem outlined in (Etessami et al., TOCT'2014). In the second part of the paper, we study the equality variant of the sum of square roots problem, which is decidable in polynomial time due to (Bl\"omer, FOCS'1991). We investigate a natural generalization of this problem when the input integers are given as straight line programs. Under the assumption of the Generalized Riemann Hypothesis (GRH), we show that this problem can be reduced to the so-called ``one dimensional'' variant. We identify the key mathematical challenges for solving this ``one dimensional'' variant.

Network structures underlie the dynamics of many complex phenomena, from gene regulation and foodwebs to power grids and social media. Yet, as they often cannot be observed directly, their connectivities must be inferred from observations of their emergent dynamics. In this work we present a powerful computational method to infer large network adjacency matrices from time series data using a neural network, in order to provide uncertainty quantification on the prediction in a manner that reflects both the non-convexity of the inference problem as well as the noise on the data. This is useful since network inference problems are typically underdetermined, and a feature that has hitherto been lacking from such methods. We demonstrate our method's capabilities by inferring line failure locations in the British power grid from its response to a power cut. Since the problem is underdetermined, many classical statistical tools (e.g. regression) will not be straightforwardly applicable. Our method, in contrast, provides probability densities on each edge, allowing the use of hypothesis testing to make meaningful probabilistic statements about the location of the power cut. We also demonstrate our method's ability to learn an entire cost matrix for a non-linear model of economic activity in Greater London. Our method outperforms OLS regression on noisy data in terms of both speed and prediction accuracy, and scales as $N^2$ where OLS is cubic. Not having been specifically engineered for network inference, our method represents a general parameter estimation scheme that is applicable to any parameter dimension.

This paper proposes a simple strategy for sim-to-real in Deep-Reinforcement Learning (DRL) -- called Roll-Drop -- that uses dropout during simulation to account for observation noise during deployment without explicitly modelling its distribution for each state. DRL is a promising approach to control robots for highly dynamic and feedback-based manoeuvres, and accurate simulators are crucial to providing cheap and abundant data to learn the desired behaviour. Nevertheless, the simulated data are noiseless and generally show a distributional shift that challenges the deployment on real machines where sensor readings are affected by noise. The standard solution is modelling the latter and injecting it during training; while this requires a thorough system identification, Roll-Drop enhances the robustness to sensor noise by tuning only a single parameter. We demonstrate an 80% success rate when up to 25% noise is injected in the observations, with twice higher robustness than the baselines. We deploy the controller trained in simulation on a Unitree A1 platform and assess this improved robustness on the physical system.

We propose a rectangular rotational invariant estimator to recover a real matrix from noisy matrix observations coming from an arbitrary additive rotational invariant perturbation, in the large dimension limit. Using the Bayes-optimality of this estimator, we derive the asymptotic minimum mean squared error (MMSE). For the particular case of Gaussian noise, we find an explicit expression for the MMSE in terms of the limiting singular value distribution of the observation matrix. Moreover, we prove a formula linking the asymptotic mutual information and the limit of log-spherical integral of rectangular matrices. We also provide numerical checks for our results, which match our theoretical predictions and known Bayesian inference results.

In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane, and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires ${\mathcal{O}}(\max\{1/\epsilon_f,1/\epsilon_g\})$ iterations to find a solution that is $\epsilon_f$-optimal for the upper-level objective and $\epsilon_g$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires ${\mathcal{O}}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$ iterations to find an $(\epsilon_f,\epsilon_g)$-optimal solution. We also prove stronger convergence guarantees under the H\"olderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems.

Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order large-dimensional tensor time series, and have wide applications in economics, finance and medical imaging. In this paper, we propose a projection estimator for the Tucker-decomposition based TFM, and provide its least-square interpretation which parallels to the least-square interpretation of the Principal Component Analysis (PCA) for the vector factor model. The projection technique simultaneously reduces the dimensionality of the signal component and the magnitudes of the idiosyncratic component tensor, thus leading to an increase of the signal-to-noise ratio. We derive a convergence rate of the projection estimator of the loadings and the common factor tensor which are faster than that of the naive PCA-based estimator. Our results are obtained under mild conditions which allow the idiosyncratic components to be weakly cross- and auto- correlated. We also provide a novel iterative procedure based on the eigenvalue-ratio principle to determine the factor numbers. Extensive numerical studies are conducted to investigate the empirical performance of the proposed projection estimators relative to the state-of-the-art ones.

In this article, we derive fast and robust parallel-in-time preconditioned iterative methods for the all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization we employ is based on a Runge--Kutta method in time, for which the development of parallel solvers is an emerging research area in the literature of numerical methods for time-dependent PDEs. By making use of classical theory of block matrices, one is able to derive a preconditioner for the systems considered. The block structure of the preconditioner allows for parallelism in the time variable, as long as one is able to provide an optimal solver for the system of the stages of the method. We thus propose a preconditioner for the latter system based on a singular value decomposition (SVD) of the (real) Runge--Kutta matrix $A_{\mathrm{RK}} = U \Sigma V^\top$. Supposing $A_{\mathrm{RK}}$ is invertible, we prove that the spectrum of the system for the stages preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle, under suitable assumptions on the matrix $U^\top V$ (the assumptions are well posed due to the polar decomposition of $A_{\mathrm{RK}}$). We show the numerical efficiency of our SVD-based preconditioner by solving the system of the stages arising from the discretization of the heat equation and the Stokes equations, with sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both problems, showing the speed-up achieved on a parallel architecture.

High-order implicit shock tracking (fitting) is a class of high-order, optimization-based numerical methods to approximate solutions of conservation laws with non-smooth features by aligning elements of the computational mesh with non-smooth features. This ensures the non-smooth features are perfectly represented by inter-element jumps and high-order basis functions approximate smooth regions of the solution without nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. In this work, we introduce a robust implicit shock tracking framework specialized for problems with parameter-dependent lead shocks (i.e., shocks separating a farfield condition from the downstream flow), which commonly arise in high-speed aerodynamics and astrophysics applications. After a shock-aligned mesh is produced at one parameter configuration, all elements upstream of the lead shock are removed and the nodes on the lead shock are positioned for new parameter configurations using the implicit shock tracking solver. The proposed framework can be used for most many-query applications involving parametrized lead shocks such as optimization, uncertainty quantification, parameter sweeps, "what-if" scenarios, or parameter-based continuation. We demonstrate the robustness and flexibility of the framework using a one-dimensional space-time Riemann problem, and two- and three-dimensional supersonic and hypersonic benchmark problems.

We propose an online planning approach for racing that generates the time-optimal trajectory for the upcoming track section. The resulting trajectory takes the current vehicle state, effects caused by \acl{3D} track geometries, and speed limits dictated by the race rules into account. In each planning step, an optimal control problem is solved, making a quasi-steady-state assumption with a point mass model constrained by gg-diagrams. For its online applicability, we propose an efficient representation of the gg-diagrams and identify negligible terms to reduce the computational effort. We demonstrate that the online planning approach can reproduce the lap times of an offline-generated racing line during single vehicle racing. Moreover, it finds a new time-optimal solution when a deviation from the original racing line is necessary, e.g., during an overtaking maneuver. Motivated by the application in a rule-based race, we also consider the scenario of a speed limit lower than the current vehicle velocity. We introduce an initializable slack variable to generate feasible trajectories despite the constraint violation while reducing the velocity to comply with the rules.

北京阿比特科技有限公司