High-order implicit shock tracking (fitting) is a class of high-order, optimization-based numerical methods to approximate solutions of conservation laws with non-smooth features by aligning elements of the computational mesh with non-smooth features. This ensures the non-smooth features are perfectly represented by inter-element jumps and high-order basis functions approximate smooth regions of the solution without nonlinear stabilization, which leads to accurate approximations on traditionally coarse meshes. In this work, we introduce a robust implicit shock tracking framework specialized for problems with parameter-dependent lead shocks (i.e., shocks separating a farfield condition from the downstream flow), which commonly arise in high-speed aerodynamics and astrophysics applications. After a shock-aligned mesh is produced at one parameter configuration, all elements upstream of the lead shock are removed and the nodes on the lead shock are positioned for new parameter configurations using the implicit shock tracking solver. The proposed framework can be used for most many-query applications involving parametrized lead shocks such as optimization, uncertainty quantification, parameter sweeps, "what-if" scenarios, or parameter-based continuation. We demonstrate the robustness and flexibility of the framework using a one-dimensional space-time Riemann problem, and two- and three-dimensional supersonic and hypersonic benchmark problems.
Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of experiments with observational measurements of short-term and long-term outcomes, in order to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for various instances of this problem. These calculations facilitate the construction of several estimators. We analyze the finite-sample performance of these estimators with a simulation calibrated to data from an evaluation of the long-term effects of a poverty alleviation program.
Two combined numerical methods for solving time-varying semilinear differential-algebraic equations (DAEs) are obtained. The convergence and correctness of the methods are proved. When constructing the methods, time-varying spectral projectors which can be found numerically are used. This enables to numerically solve the DAE in the original form without additional analytical transformations. To improve the accuracy of the second method, recalculation is used. The developed methods are applicable to the DAEs with the continuous nonlinear part which may not be differentiable in time, and the restrictions of the type of the global Lipschitz condition are not used in the presented theorems on the DAE global solvability and the convergence of the methods. This extends the scope of methods. The fulfillment of the conditions of the global solvability theorem ensures the existence of a unique exact solution on any given time interval, which enables to seek an approximate solution also on any time interval. Numerical examples illustrating the capabilities of the methods and their effectiveness in various situations are provided. To demonstrate this, mathematical models of the dynamics of electrical circuits are considered. It is shown that the results of the theoretical and numerical analyses of these models are consistent.
We introduce a new class of spatially stochastic physics and data informed deep latent models for parametric partial differential equations (PDEs) which operate through scalable variational neural processes. We achieve this by assigning probability measures to the spatial domain, which allows us to treat collocation grids probabilistically as random variables to be marginalised out. Adapting this spatial statistics view, we solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields. The implementation of these random grids poses a unique set of challenges for inverse physics informed deep learning frameworks and we propose a new architecture called Grid Invariant Convolutional Networks (GICNets) to overcome these challenges. We further show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available but whose measurement location does not coincide with any fixed mesh or grid. The proposed method is tested on a nonlinear Poisson problem, Burgers equation, and Navier-Stokes equations, and we provide extensive numerical comparisons. We demonstrate significant computational advantages over current physics informed neural learning methods for parametric PDEs while improving the predictive capabilities and flexibility of these models.
Principal Component Analysis (PCA) is a pivotal technique in the fields of machine learning and data analysis. It aims to reduce the dimensionality of a dataset while minimizing the loss of information. In recent years, there have been endeavors to utilize homomorphic encryption in privacy-preserving PCA algorithms. These approaches commonly employ a PCA routine known as PowerMethod, which takes the covariance matrix as input and generates an approximate eigenvector corresponding to the primary component of the dataset. However, their performance and accuracy are constrained by the incapability of homomorphic covariance matrix computation and the absence of a universal vector normalization strategy for the PowerMethod algorithm. In this study, we propose a novel approach to privacy-preserving PCA that addresses these limitations, resulting in superior efficiency, accuracy, and scalability compared to previous approaches. We attain such efficiency and precision through the following contributions: (i) We implement space optimization techniques for a homomorphic matrix multiplication method (Jiang et al., SIGSAC 2018), making it less prone to memory saturation in parallel computation scenarios. (ii) Leveraging the benefits of this optimized matrix multiplication, we devise an efficient homomorphic circuit for computing the covariance matrix homomorphically. (iii) Utilizing the covariance matrix, we develop a novel and efficient homomorphic circuit for the PowerMethod that incorporates a universal homomorphic vector normalization strategy to enhance both its accuracy and practicality.
Seismicity induced by human activities poses a significant threat to public safety, emphasizing the need for accurate and timely earthquake hypocenter localization. In this study, we introduce X-DeepONet, a novel variant of deep operator networks (DeepONets), for learning moving-solution operators of parametric partial differential equations (PDEs), with application to real-time earthquake localization. Leveraging the power of neural operators, X-DeepONet learns to estimate traveltime fields associated with earthquake sources by incorporating information from seismic arrival times and velocity models. Similar to the DeepONet, X-DeepONet includes a trunk net and a branch net. Additionally, we introduce a root network that not only takes the standard DeepONet's multiplication operator as input, it also takes addition and subtraction operators. We show that for problems with moving fields, the standard multiplication operation of DeepONet is insufficient to capture field relocation, while addition and subtraction operators along with the eXtended root significantly improve its accuracy both under data-driven (supervised) and physics-informed (unsupervised) training. We demonstrate the effectiveness of X-DeepONet through various experiments, including scenarios with variable velocity models and arrival times. The results show remarkable accuracy in earthquake localization, even for heterogeneous and complex velocity models. The proposed framework also exhibits excellent generalization capabilities and robustness against noisy arrival times. The method provides a computationally efficient approach for quantifying uncertainty in hypocenter locations resulting from traveltime pick errors and velocity model variations. Our results underscore X-DeepONet's potential to improve seismic monitoring systems, aiding the development of early warning systems for seismic hazard mitigation.
The Fokker-Planck equation describes the evolution of the probability density associated with a stochastic differential equation. As the dimension of the system grows, solving this partial differential equation (PDE) using conventional numerical methods becomes computationally prohibitive. Here, we introduce a fast, scalable, and interpretable method for solving the Fokker-Planck equation which is applicable in higher dimensions. This method approximates the solution as a linear combination of shape-morphing Gaussians with time-dependent means and covariances. These parameters evolve according to the method of reduced-order nonlinear solutions (RONS) which ensures that the approximate solution stays close to the true solution of the PDE for all times. As such, the proposed method approximates the transient dynamics as well as the equilibrium density, when the latter exists. Our approximate solutions can be viewed as an evolution on a finite-dimensional statistical manifold embedded in the space of probability densities. We show that the metric tensor in RONS coincides with the Fisher information matrix on this manifold. We also discuss the interpretation of our method as a shallow neural network with Gaussian activation functions and time-varying parameters. In contrast to existing deep learning methods, our method is interpretable, requires no training, and automatically ensures that the approximate solution satisfies all properties of a probability density.
A well-established approach for inferring full displacement and stress fields from possibly sparse data is to calibrate the parameter of a given constitutive model using a Bayesian update. After calibration, a (stochastic) forward simulation is conducted with the identified model parameters to resolve physical fields in regions that were not accessible to the measurement device. A shortcoming of model calibration is that the model is deemed to best represent reality, which is only sometimes the case, especially in the context of the aging of structures and materials. While this issue is often addressed with repeated model calibration, a different approach is followed in the recently proposed statistical Finite Element Method (statFEM). Instead of using Bayes' theorem to update model parameters, the displacement is chosen as the stochastic prior and updated to fit the measurement data more closely. For this purpose, the statFEM framework introduces a so-called model-reality mismatch, parametrized by only three hyperparameters. This makes the inference of full-field data computationally efficient in an online stage: If the stochastic prior can be computed offline, solving the underlying partial differential equation (PDE) online is unnecessary. Compared to solving a PDE, identifying only three hyperparameters and conditioning the state on the sensor data requires much fewer computational resources. This paper presents two contributions to the existing statFEM approach: First, we use a non-intrusive polynomial chaos method to compute the prior, enabling the use of complex mechanical models in deterministic formulations. Second, we examine the influence of prior material models (linear elastic and St.Venant Kirchhoff material with uncertain Young's modulus) on the updated solution. We present statFEM results for 1D and 2D examples, while an extension to 3D is straightforward.
A stable and high-order accurate solver for linear and nonlinear parabolic equations is presented. An additive Runge-Kutta method is used for the time stepping, which integrates the linear stiff terms by an implicit singly diagonally implicit Runge-Kutta (ESDIRK) method and the nonlinear terms by an explicit Runge-Kutta (ERK) method. In each time step, the implicit solve is performed by the recently developed Hierarchical Poincar\'e-Steklov (HPS) method. This is a fast direct solver for elliptic equations that decomposes the space domain into a hierarchical tree of subdomains and builds spectral collocation solvers locally on the subdomains. These ideas are naturally combined in the presented method since the singly diagonal coefficient in ESDIRK and a fixed time-step ensures that the coefficient matrix in the implicit solve of HPS remains the same for all time stages. This means that the precomputed inverse can be efficiently reused, leading to a scheme with complexity (in two dimensions) $\mathcal{O}(N^{1.5})$ for the precomputation where the solution operator to the elliptic problems is built, and then $\mathcal{O}(N)$ for each time step. The stability of the method is proved for first order in time and any order in space, and numerical evidence substantiates a claim of stability for a much broader class of time discretization methods.Numerical experiments supporting the accuracy of efficiency of the method in one and two dimensions are presented.
How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide the first characterization of the Bayes-optimal limits of inference in this model. If the spike is rotation-invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical mechanics. We thus propose a novel AMP, inspired by the theory of Adaptive Thouless-Anderson-Palmer equations, which saturates the theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at remarkable universality properties.
Modern time series data often exhibit complex dependence and structural changes which are not easily characterised by shifts in the mean or model parameters. We propose a nonparametric data segmentation methodology for multivariate time series termed NP-MOJO. By considering joint characteristic functions between the time series and its lagged values, NP-MOJO is able to detect change points in the marginal distribution, but also those in possibly non-linear serial dependence, all without the need to pre-specify the type of changes. We show the theoretical consistency of NP-MOJO in estimating the total number and the locations of the change points, and demonstrate the good performance of NP-MOJO against a variety of change point scenarios. We further demonstrate its usefulness in applications to seismology and economic time series.