亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Advances in satellite imaging and GPS tracking devices have given rise to a new era of remote sensing and geospatial analysis. In environmental science and conservation ecology, biotelemetric data is often high-dimensional, spatially and/or temporally, and functional in nature, meaning that there is an underlying continuity to the biological process of interest. GPS-tracking of animal movement is commonly characterized by irregular time-recording of animal position, and the movement relationships between animals are prone to sudden change. In this paper, I propose a measure of localized mutual information (LMI) to derive a correlation function for monitoring changes in the pairwise association between animal movement trajectories. The properties of the LMI measure are assessed analytically and by simulation under a variety of circumstances. Advantages and disadvantages of the LMI measure are assessed and an alternate measure of LMI is proposed to handle potential disadvantages. The measure of LMI is shown to be an effective tool for detecting shifts in the correlation of animal movements, and seasonal/phasal correlatory structure.

相關內容

It is well-known that classical optical cavities can exhibit localized phenomena associated to scattering resonances (using the Black Box Scattering Theory), leading to numerical instabilities in approximating the solution. Those localized phenomena concentrate at the inner boundary of the cavity and are called whispering gallery modes. In this paper we investigate scattering resonances for unbounded transmission problems with sign-changing coefficient (corresponding to optical cavities with negative optical propertie(s), for example made of metamaterials). Due to the change of sign of optical properties, previous results cannot be applied directly, and interface phenomena at the metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We establish the existence of scattering resonances for arbitrary two-dimensional smooth metamaterial cavities. The proof relies on an asymptotic characterization of the resonances, and extending the Black Box Scattering Theory to problems with sign-changing coefficient. Our asymptotic analysis reveals that, depending on the metamaterial's properties, scattering resonances situated closed to the real axis are associated to surface plasmons. Examples for several metamaterial cavities are provided.

We study the enumerative and analytic properties of some sequences constructed using tensor invariant theory. The octant sequences are constructed from the exceptional Lie group $G_2$ and the quadrant sequences from the special linear group $SL(3)$. In each case we show that the corresponding sequences are related by binomial transforms. The first three octant sequences and the first four quadrant sequences are listed in the On-Line Encyclopedia of Integer Sequences (OEIS). These sequences all have interpretations as enumerating two-dimensional lattice walks but for the octant sequences the boundary conditions are unconventional. These sequences are all P-recursive and we give the corresponding recurrence relations. In all cases the associated differential operators are of third order and have the remarkable property that they can be solved to give closed formulae for the ordinary generating functions in terms of classical Gaussian hypergeometric functions. Moreover, we show that the octant sequences and the quadrant sequences are related by the branching rules for the inclusion of $SL(3)$ in $G_2$.

Approximate-message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing number of new iterations proposed for increasingly complex problems, ranging from multi-layer inference to low-rank matrix estimation with elaborate priors. In this paper, we address the following questions: is there a structure underlying all AMP iterations that unifies them in a common framework? Can we use such a structure to give a modular proof of state evolution equations, adaptable to new AMP iterations without reproducing each time the full argument ? We propose an answer to both questions, showing that AMP instances can be generically indexed by an oriented graph. This enables to give a unified interpretation of these iterations, independent from the problem they solve, and a way of composing them arbitrarily. We then show that all AMP iterations indexed by such a graph admit rigorous SE equations, extending the reach of previous proofs, and proving a number of recent heuristic derivations of those equations. Our proof naturally includes non-separable functions and we show how existing refinements, such as spatial coupling or matrix-valued variables, can be combined with our framework.

A good optical flow estimation is crucial in many video analysis and restoration algorithms employed in application fields like media industry, industrial inspection and automotive. In this work, we investigate how well optical flow algorithms perform qualitatively when integrated into a state of the art video denoising algorithm. Both classic optical flow algorithms (e.g. TV-L1) as well as recent deep learning based algorithm (like RAFT or BMBC) will be taken into account. For the qualitative investigation, we will employ realistic content with challenging characteristic (noisy content, large motion etc.) instead of the standard images used in most publications.

A novel distributed control law for consensus of networked double integrator systems with biased measurements is developed in this article. The agents measure relative positions over a time-varying, undirected graph with an unknown and constant sensor bias corrupting the measurements. An adaptive control law is derived using Lyapunov methods to estimate the individual sensor biases accurately. The proposed algorithm ensures that position consensus is achieved exponentially in addition to bias estimation. The results leverage recent advances in collective initial excitation based results in adaptive estimation. Conditions connecting bipartite graphs and collective initial excitation are also developed. The algorithms are illustrated via simulation studies on a network of double integrators with local communication and biased measurements.

Federated learning (FL) has been recognized as a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge while protecting user privacy. Although various communication schemes have been proposed to expedite the FL process, most of them have assumed ideal wireless channels which provide reliable and lossless communication links between the server and mobile clients. Unfortunately, in practical systems with limited radio resources such as constraint on the training latency and constraints on the transmission power and bandwidth, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO). In this paper, we consider such non-ideal wireless channels, and carry out the first analysis showing that the FL convergence can be severely jeopardized by TO and QE, but intriguingly can be alleviated if the clients have uniform outage probabilities. These insightful results motivate us to propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability. Extensive experimental results are presented to show the superior performance of FedTOE for deep learning-based classification tasks with transmission latency constraints.

An important challenge in statistical analysis lies in controlling the estimation bias when handling the ever-increasing data size and model complexity. For example, approximate methods are increasingly used to address the analytical and/or computational challenges when implementing standard estimators, but they often lead to inconsistent estimators. So consistent estimators can be difficult to obtain, especially for complex models and/or in settings where the number of parameters diverges with the sample size. We propose a general simulation-based estimation framework that allows to construct consistent and bias corrected estimators for parameters of increasing dimensions. The key advantage of the proposed framework is that it only requires to compute a simple inconsistent estimator multiple times. The resulting Just Identified iNdirect Inference estimator (JINI) enjoys nice properties, including consistency, asymptotic normality, and finite sample bias correction better than alternative methods. We further provide a simple algorithm to construct the JINI in a computationally efficient manner. Therefore, the JINI is especially useful in settings where standard methods may be challenging to apply, for example, in the presence of misclassification and rounding. We consider comprehensive simulation studies and analyze an alcohol consumption data example to illustrate the excellent performance and usefulness of the method.

In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie (2003)'s kappa theorem. Our framework presumes a binary endogenous explanatory variable ("treatment") and a binary instrumental variable, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which we show is weight normalized, is likely to dominate the others in many contexts. A notable exception is in settings with one-sided noncompliance, where certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. We use a simulation study and three empirical applications to illustrate our findings. In applications to causal effects of college education using the college proximity instrument (Card, 1995) and causal effects of childbearing using the sibling sex composition instrument (Angrist and Evans, 1998), the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both. Overall, our results suggest that (i) the relative performance of different kappa weighting estimators varies with features of the data-generating process; and that (ii) the normalized version of Tan (2006)'s estimator may be an attractive alternative in many contexts. Applied researchers with access to a binary instrumental variable should also consider covariate balancing or doubly robust estimators of the LATE.

In this paper, two reputation based algorithms called Reputation and audit based clustering (RAC) algorithm and Reputation and audit based clustering with auxiliary anchor node (RACA) algorithm are proposed to defend against Byzantine attacks in distributed detection networks when the fusion center (FC) has no prior knowledge of the attacking strategy of Byzantine nodes. By updating the reputation index of the sensors in cluster-based networks, the system can accurately identify Byzantine nodes. The simulation results show that both proposed algorithms have superior detection performance compared with other algorithms. The proposed RACA algorithm works well even when the number of Byzantine nodes exceeds half of the total number of sensors in the network. Furthermore, the robustness of our proposed algorithms is evaluated in a dynamically changing scenario, where the attacking parameters change over time. We show that our algorithms can still achieve superior detection performance.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

北京阿比特科技有限公司