亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work aims to address the general order manipulation issue in blockchain-based decentralized exchanges (DEX) by exploring the benefits of employing differentially order-fair atomic broadcast (of-ABC) mechanisms for transaction ordering and frequent batch auction (FBA) for execution. In the suggested of-ABC approach, transactions submitted to a sufficient number of blockchain validators are ordered before or along with later transactions. FBA then executes transactions with a uniform price double auction that prioritizes price instead of transaction order within the same committed batch. To demonstrate the effectiveness of our order-but-not-execute-in-order design, we compare the welfare loss and liquidity provision in DEX under FBA and its continuous counterpart, Central Limit Order Book (CLOB). Assuming that the exchange is realized over an of-ABC protocol, we find that FBA achieves better social welfare compared to CLOB when (1) public information affecting the fundamental value of an asset is revealed more frequently than private information, or (2) the block generation interval is sufficiently large, or (3) the priority fees attached to submitted transactions are small compared to the asset price changes. Further, our findings also indicate that (4) liquidity provision is better under FBA when the market is not thin, meaning that a higher number of transactions are submitted by investors and traders in a block, or (5) when fewer privately informed traders are present. Overall, in the settings mentioned above, the adoption of FBA and of-ABC mechanisms in DEX demonstrates improved performance in terms of social welfare and liquidity provision compared to the continuous CLOB model.

相關內容

Programming-by-example (PBE) systems aim to alleviate the burden of programming. However, user-specified examples are often ambiguous, leaving multiple programs to satisfy the specification. Consequently, in most prior work, users have had to provide additional examples, particularly negative ones, to further constrain the search over compatible programs. Recent work resolves additional ambiguity by modeling program synthesis tasks as pragmatic communication, showing promising results on a graphics domain using a rudimentary user-study. We adapt pragmatic reasoning to a sub-domain of regular expressions and rigorously study its usability as a means of communication both with and without the ability to provide negative examples. Our user study (N=30) demonstrates that, with a pragmatic synthesizer, end-users can more successfully communicate a target regex using positive examples alone (95%) compared to using a non-pragmatic synthesizer (51%). Further, users can communicate more efficiently (57% fewer examples) with a pragmatic synthesizer compared to a non-pragmatic one.

Offline reinforcement learning provides a viable approach to obtain advanced control strategies for dynamical systems, in particular when direct interaction with the environment is not available. In this paper, we introduce a conceptual extension for model-based policy search methods, called variable objective policy (VOP). With this approach, policies are trained to generalize efficiently over a variety of objectives, which parameterize the reward function. We demonstrate that by altering the objectives passed as input to the policy, users gain the freedom to adjust its behavior or re-balance optimization targets at runtime, without need for collecting additional observation batches or re-training.

Periodically occurring accumulations of events or measured values are present in many time-dependent datasets and can be of interest for analyses. The frequency of such periodic behavior is often not known in advance, making it difficult to detect and tedious to explore. Automated analysis methods exist, but can be too costly for smooth, interactive analysis. We propose a compact visual representation that reveals periodicity by showing a phase histogram for a given period length that can be used standalone or in combination with other linked visualizations. Our approach supports guided, interactive analyses by suggesting other period lengths to explore, which are ranked based on two quality measures. We further describe how the phase can be mapped to visual representations in other views to reveal periodicity there.

Quality of Experience~(QoE)-driven adaptive bitrate (ABR) algorithms are typically optimized using QoE models that are based on the mean opinion score~(MOS), while such principles may not account for user heterogeneity on rating scales, resulting in unexpected behaviors. In this paper, we propose Jade, which leverages reinforcement learning with human feedback~(RLHF) technologies to better align the users' opinion scores. Jade's rank-based QoE model considers relative values of user ratings to interpret the subjective perception of video sessions. We implement linear-based and Deep Neural Network (DNN)-based architectures for satisfying both accuracy and generalization ability. We further propose entropy-aware reinforced mechanisms for training policies with the integration of the proposed QoE models. Experimental results demonstrate that Jade performs favorably on conventional metrics, such as quality and stall ratio, and improves QoE by 8.09%-38.13% in different network conditions, emphasizing the importance of user heterogeneity in QoE modeling and the potential of combining linear-based and DNN-based models for performance improvement.

Large skew-t factor copula models are attractive for the modeling of financial data because they allow for asymmetric and extreme tail dependence. We show that the copula implicit in the skew-t distribution of Azzalini and Capitanio (2003) allows for a higher level of pairwise asymmetric dependence than two popular alternative skew-t copulas. Estimation of this copula in high dimensions is challenging, and we propose a fast and accurate Bayesian variational inference (VI) approach to do so. The method uses a conditionally Gaussian generative representation of the skew-t distribution to define an augmented posterior that can be approximated accurately. A fast stochastic gradient ascent algorithm is used to solve the variational optimization. The new methodology is used to estimate copula models for intraday returns from 2017 to 2021 on 93 U.S. equities. The copula captures substantial heterogeneity in asymmetric dependence over equity pairs, in addition to the variability in pairwise correlations. We show that intraday predictive densities from the skew-t copula are more accurate than from some other copula models, while portfolio selection strategies based on the estimated pairwise tail dependencies improve performance relative to the benchmark index.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司