亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Periodically occurring accumulations of events or measured values are present in many time-dependent datasets and can be of interest for analyses. The frequency of such periodic behavior is often not known in advance, making it difficult to detect and tedious to explore. Automated analysis methods exist, but can be too costly for smooth, interactive analysis. We propose a compact visual representation that reveals periodicity by showing a phase histogram for a given period length that can be used standalone or in combination with other linked visualizations. Our approach supports guided, interactive analyses by suggesting other period lengths to explore, which are ranked based on two quality measures. We further describe how the phase can be mapped to visual representations in other views to reveal periodicity there.

相關內容

Exploration and analysis of massive datasets has recently generated increasing interest in the research and development communities. It has long been a recognized problem that many datasets contain significant levels of missing numerical data. We introduce a mathematically principled stochastic optimization imputation method based on the theory of Kriging. This is shown to be a powerful method for imputation. However, its computational effort and potential numerical instabilities produce costly and/or unreliable predictions, potentially limiting its use on large scale datasets. In this paper, we apply a recently developed multi-level stochastic optimization approach to the problem of imputation in massive medical records. The approach is based on computational applied mathematics techniques and is highly accurate. In particular, for the Best Linear Unbiased Predictor (BLUP) this multi-level formulation is exact, and is also significantly faster and more numerically stable. This permits practical application of Kriging methods to data imputation problems for massive datasets. We test this approach on data from the National Inpatient Sample (NIS) data records, Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research and Quality. Numerical results show the multi-level method significantly outperforms current approaches and is numerically robust. In particular, it has superior accuracy as compared with methods recommended in the recent report from HCUP on the important problem of missing data, which could lead to sub-optimal and poorly based funding policy decisions. In comparative benchmark tests it is shown that the multilevel stochastic method is significantly superior to recommended methods in the report, including Predictive Mean Matching (PMM) and Predicted Posterior Distribution (PPD), with up to 75% reductions in error.

The accurate representation and prediction of physical phenomena through numerical computer codes remains to be a vast and intricate interdisciplinary topic of research. Especially within the last decades, there has been a considerable push toward high performance numerical schemes to solve partial differential equations (PDEs) from the applied mathematics and numerics community. The resulting landscape of choices regarding numerical schemes for a given system of PDEs can thus easily appear daunting for an application expert that is familiar with the relevant physics, but not necessarily with the numerics. Bespoke high performance schemes in particular pose a substantial hurdle for domain scientists regarding their theory and implementation. Here, we propose a unifying scheme for grid based approximation methods to address this issue. We introduce some well defined restrictions to systematically guide an application expert through the process of classifying a given multiphysics problem, identifying suitable numerical schemes and implementing them. We introduce a fixed set of input parameters, amongst them for example the governing equations and the hardware configuration. This method not only helps to identify and assemble suitable schemes, but enables the unique combination of multiple methods on a per field basis. We exemplarily demonstrate this process and its effectiveness using different approaches and systematically show how one should exploit some given properties of a PDE problem to arrive at an efficient compound discretisation.

Generalised hypertree width ($ghw$) is a hypergraph parameter that is central to the tractability of many prominent problems with natural hypergraph structure. Computing $ghw$ of a hypergraph is notoriously hard. The decision version of the problem, checking whether $ghw(H) \leq k$, is paraNP-hard when parameterised by $k$. Furthermore, approximation of $ghw$ is at least as hard as approximation of Set-Cover, which is known to not admit any fpt approximation algorithms. Research in the computation of ghw so far has focused on identifying structural restrictions to hypergraphs -- such as bounds on the size of edge intersections -- that permit XP algorithms for $ghw$. Yet, even under these restrictions that problem has so far evaded any kind of fpt algorithm. In this paper we make the first step towards fpt algorithms for $ghw$ by showing that the parameter can be approximated in fpt time for graphs of bounded edge intersection size. In concrete terms we show that there exists an fpt algorithm, parameterised by $k$ and $d$, that for input hypergraph $H$ with maximal cardinality of edge intersections $d$ and integer $k$ either outputs a tree decomposition with $ghw(H) \leq 4k(k+d+1+)(2k-1)$, or rejects, in which case it is guaranteed that $ghw(H) > k$. Thus, in the special case, of hypergraphs of bounded edge intersection, we obtain an fpt $O(k^3)$-approximation algorithm for $ghw$.

Current synthetic speech detection (SSD) methods perform well on certain datasets but still face issues of robustness and interpretability. A possible reason is that these methods do not analyze the deficiencies of synthetic speech. In this paper, the flaws of the speaker features inherent in the text-to-speech (TTS) process are analyzed. Differences in the temporal consistency of intra-utterance speaker features arise due to the lack of fine-grained control over speaker features in TTS. Since the speaker representations in TTS are based on speaker embeddings extracted by encoders, the distribution of inter-utterance speaker features differs between synthetic and bonafide speech. Based on these analyzes, an SSD method based on temporal consistency and distribution of speaker features is proposed. On one hand, modeling the temporal consistency of intra-utterance speaker features can aid speech anti-spoofing. On the other hand, distribution differences in inter-utterance speaker features can be utilized for SSD. The proposed method offers low computational complexity and performs well in both cross-dataset and silence trimming scenarios.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司