The knockoff filter, recently developed by Barber and Candes, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.
The problem of $X$-secure $T$-colluding symmetric Private Polynomial Computation (PPC) from coded storage system with $B$ Byzantine and $U$ unresponsive servers is studied in this paper. Specifically, a dataset consisting of $M$ files is stored across $N$ distributed servers according to $(N,K+X)$ Maximum Distance Separable (MDS) codes such that any group of up to $X$ colluding servers can not learn anything about the data files. A user wishes to privately evaluate one out of a set of candidate polynomial functions over the $M$ files from the system, while guaranteeing that any $T$ colluding servers can not learn anything about the identity of the desired function and the user can not learn anything about the $M$ data files more than the desired polynomial function evaluations, in the presence of $B$ Byzantine servers that can send arbitrary responses maliciously to confuse the user and $U$ unresponsive servers that will not respond any information at all. A novel symmetric PPC scheme using Lagrange encoding is proposed. This scheme achieves a PPC rate of $1-\frac{G(K+X-1)+T+2B}{N-U}$ with secrecy rate $\frac{G(K+X-1)+T}{N-(G(K+X-1)+T+2B+U)}$ and finite field size $N+\max\{K,N-(G(K+X-1)+T+2B+U)\}$, where $G$ is the maximum degree over all the candidate polynomial functions. Moreover, to further measure the efficiency of PPC schemes, upload cost, query complexity, server computation complexity and decoding complexity required to implement the scheme are analyzed. Remarkably, the PPC setup studied in this paper generalizes all the previous MDS coded PPC setups and the degraded schemes strictly outperform the best known schemes in terms of (asymptotical) PPC rate, which is the main concern of the PPC schemes.
We consider the problem of robust deconvolution, and particularly the recovery of an unknown deterministic signal convolved with a known filter and corrupted by additive noise. We present a novel, non-iterative data-driven approach. Specifically, our algorithm works in the frequency-domain, where it tries to mimic the optimal unrealizable non-linear Wiener-like filter as if the unknown deterministic signal were known. This leads to a threshold-type regularized estimator, where the threshold at each frequency is determined in a data-driven manner. We perform a theoretical analysis of our proposed estimator, and derive approximate formulas for its Mean Squared Error (MSE) at both low and high Signal-to-Noise Ratio (SNR) regimes. We show that in the low SNR regime our method provides enhanced noise suppression, and in the high SNR regime it approaches the optimal unrealizable solution. Further, as we demonstrate in simulations, our solution is highly suitable for (approximately) bandlimited or frequency-domain sparse signals, and provides a significant gain of several dBs relative to other methods in the resulting MSE.
We consider the single-item interdependent value setting, where there is a monopolist, $n$ buyers, and each buyer has a private signal $s_i$ describing a piece of information about the item. Each bidder $i$ also has a valuation function $v_i(s_1,\ldots,s_n)$ mapping the (private) signals of all buyers to a positive real number representing their value for the item. This setting captures scenarios where the item's information is asymmetric or dispersed among agents, such as in competitions for oil drilling rights, or in auctions for art pieces. Due to the increased complexity of this model compared to standard private values, it is generally assumed that each bidder's valuation function $v_i$ is public knowledge. But in many situations, the seller may not know how a bidder aggregates signals into a valuation. In this paper, we design mechanisms that guarantee approximately-optimal social welfare while satisfying ex-post incentive compatibility and individual rationality for the case where the valuation functions are private to the bidders. When the valuations are public, it is possible for optimal social welfare to be attained by a deterministic mechanism under a single-crossing condition. In contrast, when the valuations are the bidders' private information, we show that no finite bound can be achieved by any deterministic mechanism even under single-crossing. Moreover, no randomized mechanism can guarantee better than an $n$-approximation. We thus consider valuation functions that are submodular over signals (SOS), introduced in the context of combinatorial auctions in a recent breakthrough paper by Eden et al. [EC'19]. Our main result is an $O(\log^2 n)$-approximation for buyers with private signals and valuations under the SOS condition. We also give a tight $\Theta(k)$-approximation for the case each agent's valuation depends on at most $k$ other signals even for unknown $k$.
Private information retrieval (PIR) protocols ensure that a user can download a file from a database without revealing any information on the identity of the requested file to the servers storing the database. While existing protocols strictly impose that no information is leaked on the file's identity, this work initiates the study of the tradeoffs that can be achieved by relaxing the perfect privacy requirement. We refer to such protocols as weakly-private information retrieval (WPIR) protocols. In particular, for the case of multiple noncolluding replicated servers, we study how the download rate, the upload cost, and the access complexity can be improved when relaxing the full privacy constraint. To quantify the information leakage on the requested file's identity we consider mutual information (MI), worst-case information leakage, and maximal leakage (MaxL). We present two WPIR schemes, denoted by Scheme A and Scheme B, based on two recent PIR protocols and show that the download rate of the former can be optimized by solving a convex optimization problem. We also show that Scheme A achieves an improved download rate compared to the recently proposed scheme by Samy et al. under the so-called $\epsilon$-privacy metric. Additionally, a family of schemes based on partitioning is presented. Moreover, we provide an information-theoretic converse bound for the maximum possible download rate for the MI and MaxL privacy metrics under a practical restriction on the alphabet size of queries and answers. For two servers and two files, the bound is tight under the MaxL metric, which settles the WPIR capacity in this particular case. Finally, we compare the performance of the proposed schemes and their gap to the converse bound.
Policy optimization, which learns the policy of interest by maximizing the value function via large-scale optimization techniques, lies at the heart of modern reinforcement learning (RL). In addition to value maximization, other practical considerations arise commonly as well, including the need of encouraging exploration, and that of ensuring certain structural properties of the learned policy due to safety, resource and operational constraints. These considerations can often be accounted for by resorting to regularized RL, which augments the target value function with a structure-promoting regularization term. Focusing on an infinite-horizon discounted Markov decision process, this paper proposes a generalized policy mirror descent (GPMD) algorithm for solving regularized RL. As a generalization of policy mirror descent Lan (2021), the proposed algorithm accommodates a general class of convex regularizers as well as a broad family of Bregman divergence in cognizant of the regularizer in use. We demonstrate that our algorithm converges linearly over an entire range of learning rates, in a dimension-free fashion, to the global solution, even when the regularizer lacks strong convexity and smoothness. In addition, this linear convergence feature is provably stable in the face of inexact policy evaluation and imperfect policy updates. Numerical experiments are provided to corroborate the applicability and appealing performance of GPMD.
Although machine learning models trained on massive data have led to break-throughs in several areas, their deployment in privacy-sensitive domains remains limited due to restricted access to data. Generative models trained with privacy constraints on private data can sidestep this challenge, providing indirect access to private data instead. We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy. DP-Sinkhorn minimizes the Sinkhorn divergence, a computationally efficient approximation to the exact optimal transport distance, between the model and data in a differentially private manner and uses a novel technique for control-ling the bias-variance trade-off of gradient estimates. Unlike existing approaches for training differentially private generative models, which are mostly based on generative adversarial networks, we do not rely on adversarial objectives, which are notoriously difficult to optimize, especially in the presence of noise imposed by privacy constraints. Hence, DP-Sinkhorn is easy to train and deploy. Experimentally, we improve upon the state-of-the-art on multiple image modeling benchmarks and show differentially private synthesis of informative RGB images. Project page://nv-tlabs.github.io/DP-Sinkhorn.
We propose a reparametrization scheme to address the challenges of applying differentially private SGD on large neural networks, which are 1) the huge memory cost of storing individual gradients, 2) the added noise suffering notorious dimensional dependence. Specifically, we reparametrize each weight matrix with two \emph{gradient-carrier} matrices of small dimension and a \emph{residual weight} matrix. We argue that such reparametrization keeps the forward/backward process unchanged while enabling us to compute the projected gradient without computing the gradient itself. To learn with differential privacy, we design \emph{reparametrized gradient perturbation (RGP)} that perturbs the gradients on gradient-carrier matrices and reconstructs an update for the original weight from the noisy gradients. Importantly, we use historical updates to find the gradient-carrier matrices, whose optimality is rigorously justified under linear regression and empirically verified with deep learning tasks. RGP significantly reduces the memory cost and improves the utility. For example, we are the first able to apply differential privacy on the BERT model and achieve an average accuracy of $83.9\%$ on four downstream tasks with $\epsilon=8$, which is within $5\%$ loss compared to the non-private baseline but enjoys much lower privacy leakage risk.
Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.