亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Contemporary time series data often feature objects connected by a social network that naturally induces temporal dependence involving connected neighbours. The network vector autoregressive model is useful for describing the influence of linked neighbours, while recent generalizations aim to separate influence and homophily. Existing approaches, however, require either correct specification of a time series model or accurate estimation of a network model or both, and rely exclusively on least-squares for parameter estimation. This paper proposes a new autoregressive model incorporating a flexible form for latent variables used to depict homophily. We develop a first-order differencing method for the estimation of influence requiring only the influence part of the model to be correctly specified. When the part including homophily is correctly specified admitting a semiparametric form, we leverage and generalize the recent notion of neighbour smoothing for parameter estimation, bypassing the need to specify the generative mechanism of the network. We develop new theory to show that all the estimated parameters are consistent and asymptotically normal. The efficacy of our approach is confirmed via extensive simulations and an analysis of a social media dataset.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Past work has shown that paired vision-language signals substantially improve grammar induction in multimodal datasets such as MSCOCO. We investigate whether advancements in large language models (LLMs) that are only trained with text could provide strong assistance for grammar induction in multimodal settings. We find that our text-only approach, an LLM-based C-PCFG (LC-PCFG), outperforms previous multi-modal methods, and achieves state-of-the-art grammar induction performance for various multimodal datasets. Compared to image-aided grammar induction, LC-PCFG outperforms the prior state-of-the-art by 7.9 Corpus-F1 points, with an 85% reduction in parameter count and 1.7x faster training speed. Across three video-assisted grammar induction benchmarks, LC-PCFG outperforms prior state-of-the-art by up to 7.7 Corpus-F1, with 8.8x faster training. These results shed light on the notion that text-only language models might include visually grounded cues that aid in grammar induction in multimodal contexts. Moreover, our results emphasize the importance of establishing a robust vision-free baseline when evaluating the benefit of multimodal approaches.

Bases have become an integral part of modern deep learning-based models for time series forecasting due to their ability to act as feature extractors or future references. To be effective, a basis must be tailored to the specific set of time series data and exhibit distinct correlation with each time series within the set. However, current state-of-the-art methods are limited in their ability to satisfy both of these requirements simultaneously. To address this challenge, we propose BasisFormer, an end-to-end time series forecasting architecture that leverages learnable and interpretable bases. This architecture comprises three components: First, we acquire bases through adaptive self-supervised learning, which treats the historical and future sections of the time series as two distinct views and employs contrastive learning. Next, we design a Coef module that calculates the similarity coefficients between the time series and bases in the historical view via bidirectional cross-attention. Finally, we present a Forecast module that selects and consolidates the bases in the future view based on the similarity coefficients, resulting in accurate future predictions. Through extensive experiments on six datasets, we demonstrate that BasisFormer outperforms previous state-of-the-art methods by 11.04\% and 15.78\% respectively for univariate and multivariate forecasting tasks. Code is available at: \url{//github.com/nzl5116190/Basisformer}

Graph pooling methods have been widely used on downsampling graphs, achieving impressive results on multiple graph-level tasks like graph classification and graph generation. An important line called node dropping pooling aims at exploiting learnable scoring functions to drop nodes with comparatively lower significance scores. However, existing node dropping methods suffer from two limitations: (1) for each pooled node, these models struggle to capture long-range dependencies since they mainly take GNNs as the backbones; (2) pooling only the highest-scoring nodes tends to preserve similar nodes, thus discarding the affluent information of low-scoring nodes. To address these issues, we propose a Graph Transformer Pooling method termed GTPool, which introduces Transformer to node dropping pooling to efficiently capture long-range pairwise interactions and meanwhile sample nodes diversely. Specifically, we design a scoring module based on the self-attention mechanism that takes both global context and local context into consideration, measuring the importance of nodes more comprehensively. GTPool further utilizes a diversified sampling method named Roulette Wheel Sampling (RWS) that is able to flexibly preserve nodes across different scoring intervals instead of only higher scoring nodes. In this way, GTPool could effectively obtain long-range information and select more representative nodes. Extensive experiments on 11 benchmark datasets demonstrate the superiority of GTPool over existing popular graph pooling methods.

In computational social science (CSS), researchers analyze documents to explain social and political phenomena. In most scenarios, CSS researchers first obtain labels for documents and then explain labels using interpretable regression analyses in the second step. One increasingly common way to annotate documents cheaply at scale is through large language models (LLMs). However, like other scalable ways of producing annotations, such surrogate labels are often imperfect and biased. We present a new algorithm for using imperfect annotation surrogates for downstream statistical analyses while guaranteeing statistical properties -- like asymptotic unbiasedness and proper uncertainty quantification -- which are fundamental to CSS research. We show that direct use of surrogate labels in downstream statistical analyses leads to substantial bias and invalid confidence intervals, even with high surrogate accuracy of 80--90\%. To address this, we build on debiased machine learning to propose the design-based supervised learning (DSL) estimator. DSL employs a doubly-robust procedure to combine surrogate labels with a smaller number of high-quality, gold-standard labels. Our approach guarantees valid inference for downstream statistical analyses, even when surrogates are arbitrarily biased and without requiring stringent assumptions, by controlling the probability of sampling documents for gold-standard labeling. Both our theoretical analysis and experimental results show that DSL provides valid statistical inference while achieving root mean squared errors comparable to existing alternatives that focus only on prediction without inferential guarantees.

Mediation analysis is an important tool to study causal associations in biomedical and other scientific areas and has recently gained attention in microbiome studies. Using a microbiome study of acute myeloid leukemia (AML) patients, we investigate whether the effect of induction chemotherapy intensity levels on the infection status is mediated by the microbial taxa abundance. The unique characteristics of the microbial mediators -- high-dimensionality, zero-inflation, and dependence -- call for new methodological developments in mediation analysis. The presence of an exposure-induced mediator-outcome confounder, antibiotic use, further requires a delicate treatment in the analysis. To address these unique challenges in our motivating AML microbiome study, we propose a novel nonparametric identification formula for the interventional indirect effect (IIE), a measure recently developed for studying mediation effects. We develop the corresponding estimation algorithm using the inverse probability weighting method. We also test the presence of mediation effects via constructing the standard normal bootstrap confidence intervals. Simulation studies show that the proposed method has good finite-sample performance in terms of the IIE estimation, and type-I error rate and power of the corresponding test. In the AML microbiome study, our findings suggest that the effect of induction chemotherapy intensity levels on infection is mainly mediated by patients' gut microbiome.

In the burgeoning ecosystem of Internet of Things, multivariate time series (MTS) data has become ubiquitous, highlighting the fundamental role of time series forecasting across numerous applications. The crucial challenge of long-term MTS forecasting requires adept models capable of capturing both intra- and inter-series dependencies. Recent advancements in deep learning, notably Transformers, have shown promise. However, many prevailing methods either marginalize inter-series dependencies or overlook them entirely. To bridge this gap, this paper introduces a novel series-aware framework, explicitly designed to emphasize the significance of such dependencies. At the heart of this framework lies our specific implementation: the SageFormer. As a Series-aware Graph-enhanced Transformer model, SageFormer proficiently discerns and models the intricate relationships between series using graph structures. Beyond capturing diverse temporal patterns, it also curtails redundant information across series. Notably, the series-aware framework seamlessly integrates with existing Transformer-based models, enriching their ability to comprehend inter-series relationships. Extensive experiments on real-world and synthetic datasets validate the superior performance of SageFormer against contemporary state-of-the-art approaches.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司