Players and ball detection are among the first required steps on a football analytics platform. Until recently, the existing open datasets on which the evaluations of most models were based, were not sufficient. In this work, we point out their weaknesses, and with the advent of the SoccerNet v3, we propose and deliver to the community an edited part of its dataset, in YOLO normalized annotation format for training and evaluation. The code of the methods and metrics are provided so that they can be used as a benchmark in future comparisons. The recent YOLO8n model proves better than FootAndBall in long-shot real-time detection of the ball and players on football fields.
We consider transporting a heavy payload that is attached to multiple multirotors. The current state-of-the-art controllers either do not avoid inter-robot collision at all, leading to crashes when tasked with carrying payloads that are small in size compared to the cable lengths, or use computational demanding nonlinear optimization. We propose an efficient optimization-based cable force allocation for a geometric payload transport controller to effectively avoid such collisions, while retaining the stability properties of the geometric controller. Our approach introduces a cascade of carefully designed quadratic programs that can be solved efficiently on highly constrained embedded flight controllers. We show that our approach exceeds the state-of-the-art controllers in terms of scalability by at least an order of magnitude for up to 10 robots. We demonstrate our method on challenging scenarios with up to three small multirotors with various payloads and cable lengths, where our controller runs in realtime directly on a microcontroller on the robots.
Datasets containing both categorical and continuous variables are frequently encountered in many areas, and with the rapid development of modern measurement technologies, the dimensions of these variables can be very high. Despite the recent progress made in modelling high-dimensional data for continuous variables, there is a scarcity of methods that can deal with a mixed set of variables. To fill this gap, this paper develops a novel approach for classifying high-dimensional observations with mixed variables. Our framework builds on a location model, in which the distributions of the continuous variables conditional on categorical ones are assumed Gaussian. We overcome the challenge of having to split data into exponentially many cells, or combinations of the categorical variables, by kernel smoothing, and provide new perspectives for its bandwidth choice to ensure an analogue of Bochner's Lemma, which is different to the usual bias-variance tradeoff. We show that the two sets of parameters in our model can be separately estimated and provide penalized likelihood for their estimation. Results on the estimation accuracy and the misclassification rates are established, and the competitive performance of the proposed classifier is illustrated by extensive simulation and real data studies.
Since distribution shifts are likely to occur after a model's deployment and can drastically decrease the model's performance, online test-time adaptation (TTA) continues to update the model during test-time, leveraging the current test data. In real-world scenarios, test data streams are not always independent and identically distributed (i.i.d.). Instead, they are frequently temporally correlated, making them non-i.i.d. Many existing methods struggle to cope with this scenario. In response, we propose a diversity-aware and category-balanced buffer that can simulate an i.i.d. data stream, even in non-i.i.d. scenarios. Combined with a diversity and entropy-weighted entropy loss, we show that a stable adaptation is possible on a wide range of corruptions and natural domain shifts, based on ImageNet. We achieve state-of-the-art results on most considered benchmarks.
Selecting proper clients to participate in the iterative federated learning (FL) rounds is critical to effectively harness a broad range of distributed datasets. Existing client selection methods simply consider the variability among FL clients with uni-modal data, however, have yet to consider clients with multi-modalities. We reveal that traditional client selection scheme in MFL may suffer from a severe modality-level bias, which impedes the collaborative exploitation of multi-modal data, leading to insufficient local data exploration and global aggregation. To tackle this challenge, we propose a Client-wise Modality Selection scheme for MFL (CMSFed) that can comprehensively utilize information from each modality via avoiding such client selection bias caused by modality imbalance. Specifically, in each MFL round, the local data from different modalities are selectively employed to participate in local training and aggregation to mitigate potential modality imbalance of the global model. To approximate the fully aggregated model update in a balanced way, we introduce a novel local training loss function to enhance the weak modality and align the divergent feature spaces caused by inconsistent modality adoption strategies for different clients simultaneously. Then, a modality-level gradient decoupling method is designed to derive respective submodular functions to maintain the gradient diversity during the selection progress and balance MFL according to local modality imbalance in each iteration. Our extensive experiments showcase the superiority of CMSFed over baselines and its effectiveness in multi-modal data exploitation.
In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To address this problem, we introduce a compression method based on knowledge distillation for this field, which largely reduces the number of parameters while preserving model performance as much as possible. Specifically, to enhance the capabilities of smaller models, we design a high-performing large model called Group Multi-view Vision Transformer (GMViT). In GMViT, the view-level ViT first establishes relationships between view-level features. Additionally, to capture deeper features, we employ the grouping module to enhance view-level features into group-level features. Finally, the group-level ViT aggregates group-level features into complete, well-formed 3D shape descriptors. Notably, in both ViTs, we introduce spatial encoding of camera coordinates as innovative position embeddings. Furthermore, we propose two compressed versions based on GMViT, namely GMViT-simple and GMViT-mini. To enhance the training effectiveness of the small models, we introduce a knowledge distillation method throughout the GMViT process, where the key outputs of each GMViT component serve as distillation targets. Extensive experiments demonstrate the efficacy of the proposed method. The large model GMViT achieves excellent 3D classification and retrieval results on the benchmark datasets ModelNet, ShapeNetCore55, and MCB. The smaller models, GMViT-simple and GMViT-mini, reduce the parameter size by 8 and 17.6 times, respectively, and improve shape recognition speed by 1.5 times on average, while preserving at least 90% of the classification and retrieval performance.
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies. Project page: //accidentgpt.github.io
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.
Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.