亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This methods article concerns analysing data generated from running experiments on agent based models to study industries and organisations. It demonstrates that when researchers study virtual ecologies they can and should discard statistical controls in favour of experiment controls. In the first of two illustrations we show that we can detect an effect with a fraction of the data needed for a traditional analysis, which is valuable given the computational complexity of many models. In the second we show that agent based models can provide control without introducing the biases associated with certain causal structures.

相關內容

To address the sensitivity of parameters and limited precision for physics-informed extreme learning machines (PIELM) with common activation functions, such as sigmoid, tangent, and Gaussian, in solving high-order partial differential equations (PDEs) relevant to scientific computation and engineering applications, this work develops a Fourier-induced PIELM (FPIELM) method. This approach aims to approximate solutions for a class of fourth-order biharmonic equations with two boundary conditions on both unitized and non-unitized domains. By carefully calculating the differential and boundary operators of the biharmonic equation on discretized collections, the solution for this high-order equation is reformulated as a linear least squares minimization problem. We further evaluate the FPIELM with varying hidden nodes and scaling factors for uniform distribution initialization, and then determine the optimal range for these two hyperparameters. Numerical experiments and comparative analyses demonstrate that the proposed FPIELM method is more stable, robust, precise, and efficient than other PIELM approaches in solving biharmonic equations across both regular and irregular domains.

This paper aims to devise an adaptive neural network basis method for numerically solving a second-order semilinear partial differential equation (PDE) with low-regular solutions in two/three dimensions. The method is obtained by combining basis functions from a class of shallow neural networks and the resulting multi-scale analogues, a residual strategy in adaptive methods and the non-overlapping domain decomposition method. At the beginning, in view of the solution residual, we partition the total domain $\Omega$ into $K+1$ non-overlapping subdomains, denoted respectively as $\{\Omega_k\}_{k=0}^K$, where the exact solution is smooth on subdomain $\Omega_{0}$ and low-regular on subdomain $\Omega_{k}$ ($1\le k\le K$). Secondly, the low-regular solutions on different subdomains \(\Omega_{k}\)~($1\le k\le K$) are approximated by neural networks with different scales, while the smooth solution on subdomain \(\Omega_0\) is approximated by the initialized neural network. Thirdly, we determine the undetermined coefficients by solving the linear least squares problems directly or the nonlinear least squares problem via the Gauss-Newton method. The proposed method can be extended to multi-level case naturally. Finally, we use this adaptive method for several peak problems in two/three dimensions to show its high-efficient computational performance.

Many models require integrals of high-dimensional functions: for instance, to obtain marginal likelihoods. Such integrals may be intractable, or too expensive to compute numerically. Instead, we can use the Laplace approximation (LA). The LA is exact if the function is proportional to a normal density; its effectiveness therefore depends on the function's true shape. Here, we propose the use of the probabilistic numerical framework to develop a diagnostic for the LA and its underlying shape assumptions, modelling the function and its integral as a Gaussian process and devising a "test" by conditioning on a finite number of function values. The test is decidedly non-asymptotic and is not intended as a full substitute for numerical integration - rather, it is simply intended to test the feasibility of the assumptions underpinning the LA with as minimal computation. We discuss approaches to optimize and design the test, apply it to known sample functions, and highlight the challenges of high dimensions.

The rapid advancement of quantum technologies calls for the design and deployment of quantum-safe cryptographic protocols and communication networks. There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC). While each offers unique advantages, both have drawbacks in practical implementation. In this work, we introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution. We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.

Methods for analyzing representations in neural systems are increasingly popular tools in neuroscience and mechanistic interpretability. Measures comparing neural activations across conditions, architectures, and species give scalable ways to understand information transformation within different neural networks. However, recent findings show that some metrics respond to spurious signals, leading to misleading results. Establishing benchmark test cases is thus essential for identifying the most reliable metric and potential improvements. We propose that compositional learning in recurrent neural networks (RNNs) can provide a test case for dynamical representation alignment metrics. Implementing this case allows us to evaluate if metrics can identify representations that develop throughout learning and determine if representations identified by metrics reflect the network's actual computations. Building both attractor and RNN based test cases, we show that the recently proposed Dynamical Similarity Analysis (DSA) is more noise robust and reliably identifies behaviorally relevant representations compared to prior metrics (Procrustes, CKA). We also demonstrate how such test cases can extend beyond metric evaluation to study new architectures. Specifically, testing DSA in modern (Mamba) state space models suggests that these models, unlike RNNs, may not require changes in recurrent dynamics due to their expressive hidden states. Overall, we develop test cases that showcase how DSA's enhanced ability to detect dynamical motifs makes it highly effective for identifying ongoing computations in RNNs and revealing how networks learn tasks.

This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dimensional vectors, are widely used for various graph machine learning tasks due to their ability to capture structural properties of networks effectively. However, the impact of perturbations on the performance of these methods remains relatively understudied. The research considers state-of-the-art graph embedding methods from two families: matrix factorization (e.g., LE, LLE, HOPE, M-NMF) and random walk-based (e.g., DeepWalk, LINE, node2vec). Through experiments conducted on both synthetic and real-world networks, the study reveals varying degrees of robustness within each family of graph embedding methods. The robustness is found to be influenced by factors such as network size, initial community partition strength, and the type of perturbation. Notably, node2vec and LLE consistently demonstrate higher robustness for community detection across different scenarios, including networks with degree and community size heterogeneity. These findings highlight the importance of selecting an appropriate graph embedding method based on the specific characteristics of the network and the task at hand, particularly in scenarios where robustness to perturbations is crucial.

This dissertation studies a fundamental open challenge in deep learning theory: why do deep networks generalize well even while being overparameterized, unregularized and fitting the training data to zero error? In the first part of the thesis, we will empirically study how training deep networks via stochastic gradient descent implicitly controls the networks' capacity. Subsequently, to show how this leads to better generalization, we will derive {\em data-dependent} {\em uniform-convergence-based} generalization bounds with improved dependencies on the parameter count. Uniform convergence has in fact been the most widely used tool in deep learning literature, thanks to its simplicity and generality. Given its popularity, in this thesis, we will also take a step back to identify the fundamental limits of uniform convergence as a tool to explain generalization. In particular, we will show that in some example overparameterized settings, {\em any} uniform convergence bound will provide only a vacuous generalization bound. With this realization in mind, in the last part of the thesis, we will change course and introduce an {\em empirical} technique to estimate generalization using unlabeled data. Our technique does not rely on any notion of uniform-convergece-based complexity and is remarkably precise. We will theoretically show why our technique enjoys such precision. We will conclude by discussing how future work could explore novel ways to incorporate distributional assumptions in generalization bounds (such as in the form of unlabeled data) and explore other tools to derive bounds, perhaps by modifying uniform convergence or by developing completely new tools altogether.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司