亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Magnetization dynamics in ferromagnetic materials is modeled by the Landau-Lifshitz (LL) equation, a nonlinear system of partial differential equations. Among the numerical approaches, semi-implicit schemes are widely used in the micromagnetics simulation, due to a nice compromise between accuracy and efficiency. At each time step, only a linear system needs to be solved and a projection is then applied to preserve the length of magnetization. However, this linear system contains variable coefficients and a non-symmetric structure, and thus an efficient linear solver is highly desired. If the damping parameter becomes large, it has been realized that efficient solvers are only available to a linear system with constant, symmetric, and positive definite (SPD) structure. In this work, based on the implicit-explicit Runge-Kutta (IMEX-RK) time discretization, we introduce an artificial damping term, which is treated implicitly. The remaining terms are treated explicitly. This strategy leads to a semi-implicit scheme with the following properties: (1) only a few linear system with constant and SPD structure needs to be solved at each time step; (2) it works for the LL equation with arbitrary damping parameter; (3) high-order accuracy can be obtained with high-order IMEX-RK time discretization. Numerically, second-order and third-order IMEX-RK methods are designed in both the 1-D and 3-D domains. A comparison with the backward differentiation formula scheme is undertaken, in terms of accuracy and efficiency. The robustness of both numerical methods is tested on the first benchmark problem from National Institute of Standards and Technology. The linearized stability estimate and optimal rate convergence analysis are provided for an alternate IMEX-RK2 numerical scheme as well.

相關內容

We give a complete complexity classification for the problem of finding a solution to a given system of equations over a fixed finite monoid, given that a solut ion over a more restricted monoid exists. As a corollary, we obtain a complexity classification for the same problem over groups.

Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.

This research article discusses a numerical solution of the radiative transfer equation based on the weak Galerkin finite element method. We discretize the angular variable by means of the discrete-ordinate method. Then the resulting semi-discrete hyperbolic system is approximated using the weak Galerkin method. The stability result for the proposed numerical method is devised. A priori error analysis is established under the suitable norm. In order to examine the theoretical results, numerical experiments are carried out.

We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

We propose a Bernoulli-barycentric rational matrix collocation method for two-dimensional evolutionary partial differential equations (PDEs) with variable coefficients that combines Bernoulli polynomials with barycentric rational interpolations in time and space, respectively. The theoretical accuracy $O\left((2\pi)^{-N}+h_x^{d_x-1}+h_y^{d_y-1}\right)$ of our numerical scheme is proven, where $N$ is the number of basis functions in time, $h_x$ and $h_y$ are the grid sizes in the $x$, $y$-directions, respectively, and $0\leq d_x\leq \frac{b-a}{h_x},~0\leq d_y\leq\frac{d-c}{h_y}$. For the efficient solution of the relevant linear system arising from the discretizations, we introduce a class of dimension expanded preconditioners that take the advantage of structural properties of the coefficient matrices, and we present a theoretical analysis of eigenvalue distributions of the preconditioned matrices. The effectiveness of our proposed method and preconditioners are studied for solving some real-world examples represented by the heat conduction equation, the advection-diffusion equation, the wave equation and telegraph equations.

Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we provide a reformulation of the Newton-Kleinman iteration scheme for continuous-time algebraic Riccati equations using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the equation and show in numerical examples the effectiveness of the approach.

We address the problem of constructing approximations based on orthogonal polynomials that preserve an arbitrary set of moments of a given function without loosing the spectral convergence property. To this aim, we compute the constrained polynomial of best approximation for a generic basis of orthogonal polynomials. The construction is entirely general and allows us to derive structure preserving numerical methods for partial differential equations that require the conservation of some moments of the solution, typically representing relevant physical quantities of the problem. These properties are essential to capture with high accuracy the long-time behavior of the solution. We illustrate with the aid of several numerical applications to Fokker-Planck equations the generality and the performances of the present approach.

We consider the posets of equivalence relations on finite sets under the standard embedding ordering and under the consecutive embedding ordering. In the latter case, the relations are also assumed to have an underlying linear order, which governs consecutive embeddings. For each poset we ask the well quasi-order and atomicity decidability questions: Given finitely many equivalence relations $\rho_1,\dots,\rho_k$, is the downward closed set Av$(\rho_1,\dots,\rho_k)$ consisting of all equivalence relations which do not contain any of $\rho_1,\dots,\rho_k$: (a) well-quasi-ordered, meaning that it contains no infinite antichains? and (b) atomic, meaning that it is not a union of two proper downward closed subsets, or, equivalently, that it satisfies the joint embedding property?

It is well-known that the Fourier-Galerkin spectral method has been a popular approach for the numerical approximation of the deterministic Boltzmann equation with spectral accuracy rigorously proved. In this paper, we will show that such a spectral convergence of the Fourier-Galerkin spectral method also holds for the Boltzmann equation with uncertainties arising from both collision kernel and initial condition. Our proof is based on newly-established spaces and norms that are carefully designed and take the velocity variable and random variables with their high regularities into account altogether. For future studies, this theoretical result will provide a solid foundation for further showing the convergence of the full-discretized system where both the velocity and random variables are discretized simultaneously.

北京阿比特科技有限公司