In database design, Composite Keys are used to uniquely identify records and prevent data duplication. However, they require more memory and storage space than single keys, and can make queries more CPU-intensive. Surrogate Keys are an alternative that can overcome some of these limitations, but they can also introduce new disadvantages. To address these challenges, a new type of key called a Reversible Numeric Composite Key (RNCK) has been developed. RNCK is a single number that encodes multiple data attributes, and can be decoded back to the original values. This makes it possible to achieve the benefits of both Composite Keys and Surrogate Keys, while overcoming some of their limitations. RNCK has been shown to improve query performance and reduce memory and storage requirements. It can be used in relational databases, large static datasets, and key-value caching systems. RNCK has been successfully used in production systems for several years.
An NP-complete graph decision problem, the "Multi-stage graph Simple Path" (abbr. MSP) problem, is introduced. The main contribution of this paper is a poly-time algorithm named the ZH algorithm for the problem together with the proof of its correctness, which implies NP=P. (1) A crucial structural property is discovered, whereby all MSP instances are arranged into the sequence $G_{0}$,$G_{1}$,$G_{2}$,... ($G_{k}$ essentially stands for a group of graphs for all $k\geq 0$). For each $G_{j}(j>0)$ in the sequence, there is a graph $G_{i}(0\leq i<j)$ "mathematically homomorphic" to $G_{j}$ which keeps completely accordant with $G_{j}$ on the existence of global solutions. This naturally provides a chance of applying mathematical induction for the proof of an algorithm. In previous attempts, algorithms used for making global decisions were mostly guided by heuristics and intuition. Rather, the ZH algorithm is dedicatedly designed to comply with the proposed proving framework of mathematical induction. (2) Although the ZH algorithm deals with paths, it always regards paths as a collection of edge sets. This is the key to the avoidance of exponential complexity. (3) Any poly-time algorithm that seeks global information can barely avoid the error caused by localized computation. In the ZH algorithm, the proposed reachable-path edge-set $R(e)$ and the computed information for it carry all necessary contextual information, which can be utilized to summarize the "history" and to detect the "future" for searching global solutions. (4) The relation between local strategies and global strategies is discovered and established, wherein preceding decisions can pose constraints to subsequent decisions (and vice versa). This interplay resembles the paradigm of dynamic programming, while much more convoluted. Nevertheless, the computation is always strait forward and decreases monotonically.
A software product line models the variability of highly configurable systems. Complete exploration of all valid configurations (the configuration space) is infeasible as it grows exponentially with the number of features in the worst case. In practice, few representative configurations are sampled instead, which may be used for software testing or hardware verification. Pseudo-randomness of modern computers introduces statistical bias into these samples. Quantum computing enables truly random, uniform configuration sampling based on inherently random quantum physical effects. We propose a method to encode the entire configuration space in a superposition and then measure one random sample. We show the method's uniformity over multiple samples and investigate its scale for different feature models. We discuss the possibilities and limitations of quantum computing for uniform random sampling regarding current and future quantum hardware.
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider the proximity graph of a set of $n$ disks in the plane of arbitrary radii: In this graph two disks are connected if the distance between them is at most some threshold parameter $r$. The case of intersection graphs is a special case with $r=0$. We give an algorithm that, given a target length $k$, computes the smallest value of $r$ for which there is a path of length at most $k$ between some given pair of disks in the proximity graph. Our algorithm runs in $O^*(n^{5/4})$ randomized expected time, which improves to $O^*(n^{6/5})$ for unit disk graphs, where all the disks have the same radius. Our technique is robust and can be applied to many variants of the problem. One significant variant is the case of weighted proximity graphs, where edges are assigned real weights equal to the distance between the disks or between their centers, and $k$ is replaced by a target weight $w$; that is, we seek a path whose length is at most $w$. In other variants, we want to optimize a parameter different from $r$, such as a scale factor of the radii of the disks. The main technique for the decision version of the problem (determining whether the graph with a given $r$ has the desired property) is based on efficient implementations of BFS (for the unweighted case) and of Dijkstra's algorithm (for the weighted case), using efficient data structures for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The optimization problem is then solved by combining the resulting decision procedure with enhanced variants of the interval shrinking and bifurcation technique of [4].
Large language models (LLMs) have achieved a milestone that undenia-bly changed many held beliefs in artificial intelligence (AI). However, there remains many limitations of these LLMs when it comes to true language understanding, limitations that are a byproduct of the under-lying architecture of deep neural networks. Moreover, and due to their subsymbolic nature, whatever knowledge these models acquire about how language works will always be buried in billions of microfeatures (weights), none of which is meaningful on its own, making such models hopelessly unexplainable. To address these limitations, we suggest com-bining the strength of symbolic representations with what we believe to be the key to the success of LLMs, namely a successful bottom-up re-verse engineering of language at scale. As such we argue for a bottom-up reverse engineering of language in a symbolic setting. Hints on what this project amounts to have been suggested by several authors, and we discuss in some detail here how this project could be accomplished.
Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
While anatomy learning is an essential part of medical education, there remain significant challenges in traditional learning methods, In this paper, we introduce two in-house anatomy training solutions that can visualize and superimpose 3D virtual anatomy models with informative labels using a hand-held tablet or a wide-screen AR. To investigate the feasibility and effectiveness of the proposed tablet-based 3D visualization and AR tools, we conducted a large-scale study with 236 students enrolled in undergraduate premedical programs (95 M, 141F in 118 dyadic teams). In this study, participant students were split into three groups to use one of the following learning tools in a team-based anatomy painting activity: (1) conventional textbook, (2) hand-held tablet-based 3D visualization, and (3) screen-based AR. The results showed that students who used the tablet-based visualization tool or the AR learning tool reported significantly higher (more positive) learning experience scores than those who used a textbook. Though we did not observe a significant difference in knowledge retention among the three learning tools, our further analysis of gender effects revealed that male participants generally reported more positive learning experience scores than female participants. Also, the overall experience of mixed-gender dyads was reported to be significantly lower than others in most of the learning experience and performance measures. While discussing the implications of our results in the context of anatomy and medical education, we highlight the potential of our learning tools with additional considerations related to gender and team dynamics in body painting anatomy learning interventions.
The Information Bottleneck (IB) is a method of lossy compression of relevant information. Its rate-distortion (RD) curve describes the fundamental tradeoff between input compression and the preservation of relevant information embedded in the input. However, it conceals the underlying dynamics of optimal input encodings. We argue that these typically follow a piecewise smooth trajectory when input information is being compressed, as recently shown in RD. These smooth dynamics are interrupted when an optimal encoding changes qualitatively, at a bifurcation. By leveraging the IB's intimate relations with RD, we provide substantial insights into its solution structure, highlighting caveats in its finite-dimensional treatments. Sub-optimal solutions are seen to collide or exchange optimality at its bifurcations. Despite the acceptance of the IB and its applications, there are surprisingly few techniques to solve it numerically, even for finite problems whose distribution is known. We derive anew the IB's first-order Ordinary Differential Equation, which describes the dynamics underlying its optimal tradeoff curve. To exploit these dynamics, we not only detect IB bifurcations but also identify their type in order to handle them accordingly. Rather than approaching the IB's optimal curve from sub-optimal directions, the latter allows us to follow a solution's trajectory along the optimal curve under mild assumptions. We thereby translate an understanding of IB bifurcations into a surprisingly accurate numerical algorithm.
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks. The most prominent advantage of SSL is that it reduces the dependence on labeled data. Based on the pre-training and fine-tuning strategy, even a small amount of labeled data can achieve high performance. Compared with many published self-supervised surveys on computer vision and natural language processing, a comprehensive survey for time series SSL is still missing. To fill this gap, we review current state-of-the-art SSL methods for time series data in this article. To this end, we first comprehensively review existing surveys related to SSL and time series, and then provide a new taxonomy of existing time series SSL methods. We summarize these methods into three categories: generative-based, contrastive-based, and adversarial-based. All methods can be further divided into ten subcategories. To facilitate the experiments and validation of time series SSL methods, we also summarize datasets commonly used in time series forecasting, classification, anomaly detection, and clustering tasks. Finally, we present the future directions of SSL for time series analysis.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.