Rapid progress in scalable, commoditized tools for data collection and data processing has made it possible for firms and policymakers to employ ever more complex metrics as guides for decision-making. These developments have highlighted a prevailing challenge -- deciding *which* metrics to compute. In particular, a firm's ability to compute a wider range of existing metrics does not address the problem of *unknown unknowns*, which reflects informational limitations on the part of the firm. To guide the choice of metrics in the face of this informational problem, we turn to the evaluated agents themselves, who may have more information than a principal about how to measure outcomes effectively. We model this interaction as a simple agency game, where we ask: *When does an agent have an incentive to reveal the observability of a cost-correlated variable to the principal?* There are two effects: better information reduces the agent's information rents but also makes some projects go forward that otherwise would fail. We show that the agent prefers to reveal information that exposes a strong enough differentiation between high and low costs. Expanding the agent's action space to include the ability to *garble* their information, we show that the agent often prefers to garble over full revelation. Still, giving the agent the ability to garble can lead to higher total welfare. Our model has analogies with price discrimination, and we leverage some of these synergies to analyze total welfare.
Context-aware emotion recognition (CAER) has recently boosted the practical applications of affective computing techniques in unconstrained environments. Mainstream CAER methods invariably extract ensemble representations from diverse contexts and subject-centred characteristics to perceive the target person's emotional state. Despite advancements, the biggest challenge remains due to context bias interference. The harmful bias forces the models to rely on spurious correlations between background contexts and emotion labels in likelihood estimation, causing severe performance bottlenecks and confounding valuable context priors. In this paper, we propose a counterfactual emotion inference (CLEF) framework to address the above issue. Specifically, we first formulate a generalized causal graph to decouple the causal relationships among the variables in CAER. Following the causal graph, CLEF introduces a non-invasive context branch to capture the adverse direct effect caused by the context bias. During the inference, we eliminate the direct context effect from the total causal effect by comparing factual and counterfactual outcomes, resulting in bias mitigation and robust prediction. As a model-agnostic framework, CLEF can be readily integrated into existing methods, bringing consistent performance gains.
In contrast to the incremental classification task, the incremental detection task is characterized by the presence of data ambiguity, as an image may have differently labeled bounding boxes across multiple continuous learning stages. This phenomenon often impairs the model's ability to effectively learn new classes. However, existing research has paid less attention to the forward compatibility of the model, which limits its suitability for incremental learning. To overcome this obstacle, we propose leveraging a visual-language model such as CLIP to generate text feature embeddings for different class sets, which enhances the feature space globally. We then employ super-classes to replace the unavailable novel classes in the early learning stage to simulate the incremental scenario. Finally, we utilize the CLIP image encoder to accurately identify potential objects. We incorporate the finely recognized detection boxes as pseudo-annotations into the training process, thereby further improving the detection performance. We evaluate our approach on various incremental learning settings using the PASCAL VOC 2007 dataset, and our approach outperforms state-of-the-art methods, particularly for recognizing the new classes.
The success of intelligent robotic missions relies on integrating various research tasks, each demanding distinct representations. Designing task-specific representations for each task is costly and impractical. Unified representations suitable for multiple tasks remain unexplored. My outline introduces a series of research outcomes of GP-based probabilistic distance field (GPDF) representation that mathematically models the fundamental property of Euclidean distance field (EDF) along with gradients, surface normals and dense reconstruction. The progress to date and ongoing future works show that GPDF has the potential to offer a unified solution of representation for multiple tasks such as localisation, mapping, motion planning, obstacle avoidance, grasping, human-robot collaboration, and dense visualisation. I believe that GPDF serves as the cornerstone for robots to accomplish more complex and challenging tasks. By leveraging GPDF, robots can navigate through intricate environments, understand spatial relationships, and interact with objects and humans seamlessly.
The remarkable capabilities of modern large language models are rooted in their vast repositories of knowledge encoded within their parameters, enabling them to perceive the world and engage in reasoning. The inner workings of how these models store knowledge have long been a subject of intense interest and investigation among researchers. To date, most studies have concentrated on isolated components within these models, such as the Multilayer Perceptrons and attention head. In this paper, we delve into the computation graph of the language model to uncover the knowledge circuits that are instrumental in articulating specific knowledge. The experiments, conducted with GPT2 and TinyLLAMA, has allowed us to observe how certain information heads, relation heads, and Multilayer Perceptrons collaboratively encode knowledge within the model. Moreover, we evaluate the impact of current knowledge editing techniques on these knowledge circuits, providing deeper insights into the functioning and constraints of these editing methodologies. Finally, we utilize knowledge circuits to analyze and interpret language model behaviors such as hallucinations and in-context learning. We believe the knowledge circuit holds potential for advancing our understanding of Transformers and guiding the improved design of knowledge editing. Code and data are available in //github.com/zjunlp/KnowledgeCircuits.
Racial and other demographic imputation is necessary for many applications, especially in auditing disparities and outreach targeting in political campaigns. The canonical approach is to construct continuous predictions -- e.g., based on name and geography -- and then to $\textit{discretize}$ the predictions by selecting the most likely class (argmax). We study how this practice produces $\textit{discretization bias}$. In particular, we show that argmax labeling, as used by a prominent commercial voter file vendor to impute race/ethnicity, results in a substantial under-count of African-American voters, e.g., by 28.2% points in North Carolina. This bias can have substantial implications in downstream tasks that use such labels. We then introduce a $\textit{joint optimization}$ approach -- and a tractable $\textit{data-driven thresholding}$ heuristic -- that can eliminate this bias, with negligible individual-level accuracy loss. Finally, we theoretically analyze discretization bias, show that calibrated continuous models are insufficient to eliminate it, and that an approach such as ours is necessary. Broadly, we warn researchers and practitioners against discretizing continuous demographic predictions without considering downstream consequences.
Machine unlearning, a novel area within artificial intelligence, focuses on addressing the challenge of selectively forgetting or reducing undesirable knowledge or behaviors in machine learning models, particularly in the context of large language models (LLMs). This paper introduces a methodology to align LLMs, such as Open Pre-trained Transformer Language Models, with ethical, privacy, and safety standards by leveraging the gradient ascent algorithm for knowledge unlearning. Our approach aims to selectively erase or modify learned information in LLMs, targeting harmful responses and copyrighted content. This paper presents a dual-pronged approach to enhance the ethical and safe behavior of large language models (LLMs) by addressing the issues of harmful responses and copyrighted content. To mitigate harmful responses, we applied gradient ascent on the PKU dataset, achieving a 75\% reduction in harmful responses for Open Pre-trained Transformer Language Models (OPT1.3b and OPT2.7b) \citet{zhang2022opt} while retaining previous knowledge using the TruthfulQA dataset \citet{DBLP:journals/corr/abs-2109-07958}. For handling copyrighted content, we constructed a custom dataset based on the Lord of the Rings corpus and aligned LLMs (OPT1.3b and OPT2.7b) \citet{zhang2022opt} through LoRA: Low-Rank Adaptation of Large Language Models \citet{DBLP:journals/corr/abs-2106-09685} finetuning. Subsequently, we employed gradient ascent to unlearn the Lord of the Rings content, resulting in a remarkable reduction in the presence of copyrighted material. To maintain a diverse knowledge base, we utilized the Book Corpus dataset. Additionally, we propose a new evaluation technique for assessing the effectiveness of harmful unlearning.
The integration of technology into exercise regimens has emerged as a strategy to enhance normal human capabilities and return human motor function after injury or illness by enhancing motor learning and retention. Much research has focused on how active devices, whether confined to a lab or made into a wearable format, can apply forces at set times and conditions to optimize the process of learning. However, the focus on active force production often forces devices to either be confined to simple movements or interventions. As such, in this paper, we investigate how passive device behaviors can contribute to the process of motor learning by themselves. Our approach involves using a wearable resistance (WR) device, which is outfitted with elastic bands, to apply a force field that changes in response to a person's movements while performing exercises. We develop a method to measure the produced forces from the device without impeding the function and we characterize the device's force generation abilities. We then present a study assessing the impact of the WR device on motor learning of proper squat form compared to visual or no feedback. Biometrics such as knee and hip angles were used to monitor and assess subject performance. Our findings indicate that the force fields produced while training with the WR device can improve performance in full-body exercises similarly to a more direct visual feedback mechanism, though the improvement is not consistent across all performance metrics. Through our research, we contribute important insights into the application of passive wearable resistance technology in practical exercise settings.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.