Intelligent reflecting surface (IRS) has emerged as a promising technique to control wireless propagation environment for enhancing the communication performance cost-effectively. However, the rapidly time-varying channel in high-mobility communication scenarios such as vehicular communication renders it challenging to obtain the instantaneous channel state information (CSI) efficiently for IRS with a large number of reflecting elements. In this paper, we propose a new roadside IRS-aided vehicular communication system to tackle this challenge. Specifically, by exploiting the symmetrical deployment of IRSs with inter-laced equal intervals on both sides of the road and the cooperation among nearby IRS controllers, we propose a new two-stage channel estimation scheme with off-line and online training, respectively, to obtain the static/time-varying CSI required by the proposed low-complexity passive beamforming scheme efficiently. The proposed IRS beamforming and online channel estimation designs leverage the existing uplink pilots in wireless networks and do not require any change of the existing transmission protocol. Moreover, they can be implemented by each of IRS controllers independently, without the need of any real-time feedback from the user's serving BS. Simulation results show that the proposed designs can efficiently achieve the high IRS passive beamforming gain and thus significantly enhance the achievable communication throughput for high-speed vehicular communications.
Community detection is a classic problem in network science with extensive applications in various fields. Among numerous approaches, the most common method is modularity maximization. Despite their design philosophy and wide adoption, heuristic modularity maximization algorithms rarely return an optimal partition or anything similar. We propose a specialized algorithm, Bayan, which returns partitions with a guarantee of either optimality or proximity to an optimal partition. At the core of the Bayan algorithm is a branch-and-cut scheme that solves an integer programming formulation of the problem to optimality or approximate it within a factor. We demonstrate Bayan's distinctive accuracy and stability over 21 other algorithms in retrieving ground-truth communities in synthetic benchmarks and node labels in real networks. Bayan is several times faster than open-source and commercial solvers for modularity maximization making it capable of finding optimal partitions for instances that cannot be optimized by any other existing method. Overall, our assessments point to Bayan as a suitable choice for exact maximization of modularity in networks with up to 3000 edges (in their largest connected component) and approximating maximum modularity in larger networks on ordinary computers.
We consider a wireless communication system with a passive eavesdropper, in which a transmitter and legitimate receiver generate and use key bits to secure the transmission of their data. These bits are added to and used from a pool of available key bits. In this work, we analyze the reliability in terms of the probability that the budget of available key bits will be exhausted. In addition, we investigate the latency before a transmission can take place. Since security, reliability, and latency are three important metrics for modern communication systems, it is of great interest to jointly analyze them in relation to the system parameters. Interestingly, we show under what conditions the system may remain in an active state indefinitely, i.e., never run out of available secret-key bits. The results presented in this work can be used by system designers to adjust the system parameters in such a way that the requirements of the application in terms of both reliability and latency are met.
In this paper, we consider waveform design for dualfunction radar-communication systems based on multiple-inputmultiple-out arrays. To achieve better Rician target detection performance, we use the relative entropy associated with the formulated detection problem as the design metric. We also impose a multiuser interference energy constraint on the waveforms to ensure the achievable sum-rate of the communications. Two algorithms are presented to tackle the nonlinear non-convex waveform design problem. In the first algorithm, we derive a quadratic function to minorize the objective function. To tackle the quadratically constrained quadratic programming problem at each iteration, a semidefinite relaxation approach followed by a rank-one decomposition procedure and an efficient alternating direction method of multipliers (ADMM) are proposed, respectively. In the second algorithm, we present a novel ADMM algorithm to tackle the optimization problem and employ an efficient minorization-maximization approach in the inner loop of the ADMM algorithm. Numerical results demonstrate the superiority of both algorithms. Moreover, the presented algorithms can be extended to synthesize peak-to-average-power ratio constrained waveforms, which allows the radio frequency amplifier to operate at an increased efficiency.
We analyze the bit complexity of efficient algorithms for fundamental optimization problems, such as linear regression, $p$-norm regression, and linear programming (LP). State-of-the-art algorithms are iterative, and in terms of the number of arithmetic operations, they match the current time complexity of multiplying two $n$-by-$n$ matrices (up to polylogarithmic factors). However, previous work has typically assumed infinite precision arithmetic, and due to complicated inverse maintenance techniques, the actual running times of these algorithms are unknown. To settle the running time and bit complexity of these algorithms, we demonstrate that a core common subroutine, known as \emph{inverse maintenance}, is backward-stable. Additionally, we show that iterative approaches for solving constrained weighted regression problems can be accomplished with bounded-error pre-conditioners. Specifically, we prove that linear programs can be solved approximately in matrix multiplication time multiplied by polylog factors that depend on the condition number $\kappa$ of the matrix and the inner and outer radius of the LP problem. $p$-norm regression can be solved approximately in matrix multiplication time multiplied by polylog factors in $\kappa$. Lastly, linear regression can be solved approximately in input-sparsity time multiplied by polylog factors in $\kappa$. Furthermore, we present results for achieving lower than matrix multiplication time for $p$-norm regression by utilizing faster solvers for sparse linear systems.
In this article, physical layer security (PLS) in an intelligent reflecting surface (IRS) assisted multiple-input multiple-output multiple antenna eavesdropper (MIMOME) system is studied. In particular, we consider a practical scenario without instantaneous channel state information (CSI) of the eavesdropper and assume that the eavesdropping channel is a Rayleigh channel. To reduce the complexity of currently available IRS-assisted PLS schemes, we propose a low-complexity deep learning (DL) based approach to design transmitter beamforming and IRS jointly, where the precoding vector and phase shift matrix are designed to minimize the secrecy outage probability. Simulation results demonstrate that the proposed DL-based approach can achieve a similar performance of that with conventional alternating optimization (AO) algorithms for a significant reduction in the computational complexity.
In contact-rich manipulation, the robot dynamics are coupled with an environment that has application-specific dynamic properties (stiffness, inertia) and geometry (contact normal). Knowledge of these environmental parameters can improve control and monitoring, but they are often unobserved and may vary, either online or between task instances. Observers, such as the extended Kalman filter, can be used to estimate these parameters, but such model-based techniques can require too much engineering work to scale up to complex environments, such as multi-point contact. To accelerate environment modeling, we propose environment primitives: parameterized environment dynamics that can be connected in parallel and are expressed in an automatic differentiation framework. This simplifies offline gradient-based optimization to fit model parameters and linearization of the coupled dynamics for an observer. This method is implemented for stiffness contact models, allowing the fitting of contact geometry and stiffness offline or their online estimation by an extended Kalman filter. This method is applied to a collaborative robot, estimating external force, contact stiffness, and contact geometry from the motor position and current. The estimates of external force and stiffness are compared with a momentum observer and direct force measurements.
Massive connectivity for extra large-scale multi-input multi-output (XL-MIMO) systems is a challenging issue due to the near-field access channels and the prohibitive cost. In this paper, we propose an uplink grant-free massive access scheme for XL-MIMO systems, in which a mixed-analog-to-digital converters (ADC) architecture is adopted to strike the right balance between access performance and power consumption. By exploiting the spatial-domain structured sparsity and the piecewise angular-domain cluster sparsity of massive access channels, a compressive sensing (CS)-based two-stage orthogonal approximate message passing algorithm is proposed to efficiently solve the joint activity detection and channel estimation problem. Particularly, high-precision quantized measurements are leveraged to perform accurate hyper-parameter estimation, thereby facilitating the activity detection. Moreover, we adopt a subarray-wise estimation strategy to overcome the severe angular-domain energy dispersion problem which is caused by the near-field effect in XL-MIMO channels. Simulation results verify the superiority of our proposed algorithm over state-of-the-art CS algorithms for massive access based on XL-MIMO with mixed-ADC architectures.
In this paper, a novel transmissive reconfigurable intelligent surface (RIS) enabled uplink communication system with orthogonal frequency division multiple access (OFDMA) is investigated. Specifically, a non-conventional receiver architecture equipped with a single receiving horn antenna and a transmissive RIS is first proposed, and a far-near field channel model based on planar waves and spherical waves is also given. Then, in order to maximize the system sum-rate of uplink communications, we formulate a joint optimization problem over subcarrier allocation, power allocation and RIS transmissive coefficient design while taking account of user quality-of-service (QoS) constraint. Due to the coupling of optimization variables, the optimization problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is utilized to decouple the optimization variables and divide the problem into two sub-problems to solve. First, the problem of joint subcarrier allocation and power allocation is solved via the Lagrangian dual decomposition method. Then, the RIS transmissive coefficient design scheme can be obtained by applying difference-of-convex (DC) programming, successive convex approximation (SCA) and penalty function methods. Finally, the two sub-problems are iterated alternately until convergence is achieved. Numerical results verify that the proposed algorithm has good convergence performance and can improve sum-rate of the proposed system compared with other benchmark algorithms.
Massive access has been challenging for the fifth generation (5G) and beyond since the abundance of devices causes communication overload to skyrocket. In an uplink massive access scenario, device traffic is sporadic in any given coherence time. Thus, channels across the antennas of each device exhibit correlation, which can be characterized by the row sparse channel matrix structure. In this work, we develop a bilinear generalized approximate message passing (BiGAMP) algorithm based on the row sparse channel matrix structure. This algorithm can jointly detect device activities, estimate channels, and detect signals in massive multiple-input multiple-output (MIMO) systems by alternating updates between channel matrices and signal matrices. The signal observation provides additional information for performance improvement compared to the existing algorithms. We further analyze state evolution (SE) to measure the performance of the proposed algorithm and characterize the convergence condition for SE. Moreover, we perform theoretical analysis on the error probability of device activity detection, the mean square error of channel estimation, and the symbol error rate of signal detection. The numerical results demonstrate the superiority of the proposed algorithm over the state-of-the-art methods in DADCE-SD, and the numerical results are relatively close to the theoretical analysis results.
Near-field communications present new opportunities over near-field channels, however, the spherical wavefront propagation makes near-field signal processing challenging. In this context, this paper proposes efficient near-field channel estimation methods for wideband MIMO mmWave systems with the aid of extremely large-scale reconfigurable intelligent surfaces (XL-RIS). For the wideband signals reflected by the analog RIS, we characterize their near-field beam squint effect in both angle and distance domains. Based on the mathematical analysis of the near-field beam patterns over all frequencies, a wideband spherical-domain dictionary is constructed by minimizing the coherence of two arbitrary beams. In light of this, we formulate a two-dimensional compressive sensing problem to recover the channel parameter based on the spherical-domain sparsity of mmWave channels. To this end, we present a correlation coefficient-based atom matching method within our proposed multi-frequency parallelizable subspace recovery framework for efficient solutions. Additionally, we propose a two-dimensional oracle estimator as a benchmark and derive its lower bound across all subcarriers. Our findings emphasize the significance of system hyperparameters and the sensing matrix of each subcarrier in determining the accuracy of the estimation. Finally, numerical results show that our proposed method achieves considerable performance compared with the lower bound and has a time complexity linear to the number of RIS elements.