亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An adaptive modified weak Galerkin method (AmWG) for an elliptic problem is studied in this paper, in addition to its convergence and optimality. The modified weak Galerkin bilinear form is simplified without the need of the skeletal variable, and the approximation space is chosen as the discontinuous polynomial space as in the discontinuous Galerkin method. Upon a reliable residual-based a posteriori error estimator, an adaptive algorithm is proposed together with its convergence and quasi-optimality proved for the lowest order case. The primary tool is to bridge the connection between the modified weak Galerkin method and the Crouzeix-Raviart nonconforming finite element. Unlike the traditional convergence analysis for methods with a discontinuous polynomial approximation space, the convergence of AmWG is penalty parameter free. Numerical results are presented to support the theoretical results.

相關內容

This paper considers the problem of learning a single ReLU neuron with squared loss (a.k.a., ReLU regression) in the overparameterized regime, where the input dimension can exceed the number of samples. We analyze a Perceptron-type algorithm called GLM-tron (Kakade et al., 2011) and provide its dimension-free risk upper bounds for high-dimensional ReLU regression in both well-specified and misspecified settings. Our risk bounds recover several existing results as special cases. Moreover, in the well-specified setting, we provide an instance-wise matching risk lower bound for GLM-tron. Our upper and lower risk bounds provide a sharp characterization of the high-dimensional ReLU regression problems that can be learned via GLM-tron. On the other hand, we provide some negative results for stochastic gradient descent (SGD) for ReLU regression with symmetric Bernoulli data: if the model is well-specified, the excess risk of SGD is provably no better than that of GLM-tron ignoring constant factors, for each problem instance; and in the noiseless case, GLM-tron can achieve a small risk while SGD unavoidably suffers from a constant risk in expectation. These results together suggest that GLM-tron might be preferable to SGD for high-dimensional ReLU regression.

The AI community is increasingly focused on merging logic with deep learning to create Neuro-Symbolic (NeSy) paradigms and assist neural approaches with symbolic knowledge. A significant trend in the literature involves integrating axioms and facts in loss functions by grounding logical symbols with neural networks and operators with fuzzy semantics. Logic Tensor Networks (LTN) is one of the main representatives in this category, known for its simplicity, efficiency, and versatility. However, it has been previously shown that not all fuzzy operators perform equally when applied in a differentiable setting. Researchers have proposed several configurations of operators, trading off between effectiveness, numerical stability, and generalization to different formulas. This paper presents a configuration of fuzzy operators for grounding formulas end-to-end in the logarithm space. Our goal is to develop a configuration that is more effective than previous proposals, able to handle any formula, and numerically stable. To achieve this, we propose semantics that are best suited for the logarithm space and introduce novel simplifications and improvements that are crucial for optimization via gradient-descent. We use LTN as the framework for our experiments, but the conclusions of our work apply to any similar NeSy framework. Our findings, both formal and empirical, show that the proposed configuration outperforms the state-of-the-art and that each of our modifications is essential in achieving these results.

This paper proposes and analyzes a novel fully discrete finite element scheme with the interpolation operator for stochastic Cahn-Hilliard equations with functional-type noise. The nonlinear term satisfies a one-side Lipschitz condition and the diffusion term is globally Lipschitz continuous. The novelties of this paper are threefold. First, the $L^2$-stability ($L^\infty$ in time) and the discrete $H^2$-stability ($L^2$ in time) are proved for the proposed scheme. The idea is to utilize the special structure of the matrix assembled by the nonlinear term. None of these stability results has been proved for the fully implicit scheme in existing literature due to the difficulty arising from the interaction of the nonlinearity and the multiplicative noise. Second, the higher moment stability in $L^2$-norm of the discrete solution is established based on the previous stability results. Third, the H\"older continuity in time for the strong solution is established under the minimum assumption of the strong solution. Based on these, the discrete $H^{-1}$-norm of the strong convergence is discussed. Several numerical experiments including stability and convergence are also presented to validate our theoretical results.

In this work we consider a model problem of deep neural learning, namely the learning of a given function when it is assumed that we have access to its point values on a finite set of points. The deep neural network interpolant is the the resulting approximation of f, which is obtained by a typical machine learning algorithm involving a given DNN architecture and an optimisation step, which is assumed to be solved exactly. These are among the simplest regression algorithms based on neural networks. In this work we introduce a new approach to the estimation of the (generalisation) error and to convergence. Our results include (i) estimates of the error without any structural assumption on the neural networks and under mild regularity assumptions on the learning function f (ii) convergence of the approximations to the target function f by only requiring that the neural network spaces have appropriate approximation capability.

We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a $\mathcal{C}^2$ boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.

We study the randomized $n$-th minimal errors (and hence the complexity) of vector valued mean computation, which is the discrete version of parametric integration. The results of the present paper form the basis for the complexity analysis of parametric integration in Sobolev spaces, which will be presented in Part 2. Altogether this extends previous results of Heinrich and Sindambiwe (J.\ Complexity, 15 (1999), 317--341) and Wiegand (Shaker Verlag, 2006). Moreover, a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting is solved.

The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.

In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell's equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with $Q_k$-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy. The approaches presented prove to be robust and allow the modeling of optical problems and the treatment of complex nonlinearities as well as geometries of various physical systems coupled with electromagnetic fields.

We present an entropy stable nodal discontinuous Galerkin spectral element method (DGSEM) for the two-layer shallow water equations on two dimensional curvilinear meshes. We mimic the continuous entropy analysis on the semi-discrete level with the DGSEM constructed on Legendre-Gauss-Lobatto (LGL) nodes. The use of LGL nodes endows the collocated nodal DGSEM with the summation-by-parts property that is key in the discrete analysis. The approximation exploits an equivalent flux differencing formulation for the volume contributions, which generate an entropy conservative split-form of the governing equations. A specific combination of an entropy conservative numerical surface flux and discretization of the nonconservative terms is then applied to obtain a high-order path-conservative scheme that is entropy conservative and has the well-balanced property for discontinuous bathymetry. Dissipation is added at the interfaces to create an entropy stable approximation that satisfies the second law of thermodynamics in the discrete case. We conclude with verification of the theoretical findings through numerical tests and demonstrate results about convergence, entropy stability and well-balancedness of the scheme.

The generalization mystery in deep learning is the following: Why do over-parameterized neural networks trained with gradient descent (GD) generalize well on real datasets even though they are capable of fitting random datasets of comparable size? Furthermore, from among all solutions that fit the training data, how does GD find one that generalizes well (when such a well-generalizing solution exists)? We argue that the answer to both questions lies in the interaction of the gradients of different examples during training. Intuitively, if the per-example gradients are well-aligned, that is, if they are coherent, then one may expect GD to be (algorithmically) stable, and hence generalize well. We formalize this argument with an easy to compute and interpretable metric for coherence, and show that the metric takes on very different values on real and random datasets for several common vision networks. The theory also explains a number of other phenomena in deep learning, such as why some examples are reliably learned earlier than others, why early stopping works, and why it is possible to learn from noisy labels. Moreover, since the theory provides a causal explanation of how GD finds a well-generalizing solution when one exists, it motivates a class of simple modifications to GD that attenuate memorization and improve generalization. Generalization in deep learning is an extremely broad phenomenon, and therefore, it requires an equally general explanation. We conclude with a survey of alternative lines of attack on this problem, and argue that the proposed approach is the most viable one on this basis.

北京阿比特科技有限公司