As the use of machine learning continues to expand, the importance of ensuring its safety cannot be overstated. A key concern in this regard is the ability to identify whether a given sample is from the training distribution, or is an "Out-Of-Distribution" (OOD) sample. In addition, adversaries can manipulate OOD samples in ways that lead a classifier to make a confident prediction. In this study, we present a novel approach for certifying the robustness of OOD detection within a $\ell_2$-norm around the input, regardless of network architecture and without the need for specific components or additional training. Further, we improve current techniques for detecting adversarial attacks on OOD samples, while providing high levels of certified and adversarial robustness on in-distribution samples. The average of all OOD detection metrics on CIFAR10/100 shows an increase of $\sim 13 \% / 5\%$ relative to previous approaches.
We present a novel extension of the traditional neural network approach to classification tasks, referred to as variational classification (VC). By incorporating latent variable modeling, akin to the relationship between variational autoencoders and traditional autoencoders, we derive a training objective based on the evidence lower bound (ELBO), optimized using an adversarial approach. Our VC model allows for more flexibility in design choices, in particular class-conditional latent priors, in place of the implicit assumptions made in off-the-shelf softmax classifiers. Empirical evaluation on image and text classification datasets demonstrates the effectiveness of our approach in terms of maintaining prediction accuracy while improving other desirable properties such as calibration and adversarial robustness, even when applied to out-of-domain data.
Efficiently and reliably estimating uncertainty is an important objective in deep learning. It is especially pertinent to autoregressive sequence tasks, where training and inference costs are typically very high. However, existing research has predominantly focused on tasks with static data such as image classification. In this work, we investigate Ensemble Distribution Distillation (EDD) applied to large-scale natural language sequence-to-sequence data. EDD aims to compress the superior uncertainty performance of an expensive (teacher) ensemble into a cheaper (student) single model. Importantly, the ability to separate knowledge (epistemic) and data (aleatoric) uncertainty is retained. Existing probability-space approaches to EDD, however, are difficult to scale to large vocabularies. We show, for modern transformer architectures on large-scale translation tasks, that modelling the ensemble logits, instead of softmax probabilities, leads to significantly better students. Moreover, the students surprisingly even outperform Deep Ensembles by up to ~10% AUROC on out-of-distribution detection, whilst matching them at in-distribution translation.
It is well known that computer vision can be unreliable when faced with previously unseen imaging conditions. This paper proposes a method to adapt camera parameters according to a normalizing flow-based out-of-distibution detector. A small-scale study is conducted which shows that adapting camera parameters according to this out-of-distibution detector leads to an average increase of 3 to 4 percentage points in mAP, mAR and F1 performance metrics of a YOLOv4 object detector. As a secondary result, this paper also shows that it is possible to train a normalizing flow model for out-of-distribution detection on the COCO dataset, which is larger and more diverse than most benchmarks for out-of-distibution detectors.
Despite recent advances in detecting fake news generated by neural models, their results are not readily applicable to effective detection of human-written disinformation. What limits the successful transfer between them is the sizable gap between machine-generated fake news and human-authored ones, including the notable differences in terms of style and underlying intent. With this in mind, we propose a novel framework for generating training examples that are informed by the known styles and strategies of human-authored propaganda. Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles, while also incorporating propaganda techniques, such as appeal to authority and loaded language. In particular, we create a new training dataset, PropaNews, with 2,256 examples, which we release for future use. Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
Given the increasing interest in interpretable machine learning, classification trees have again attracted the attention of the scientific community because of their glass-box structure. These models are usually built using greedy procedures, solving subproblems to find cuts in the feature space that minimize some impurity measures. In contrast to this standard greedy approach and to the recent advances in the definition of the learning problem through MILP-based exact formulations, in this paper we propose a novel evolutionary algorithm for the induction of classification trees that exploits a memetic approach that is able to handle datasets with thousands of points. Our procedure combines the exploration of the feasible space of solutions with local searches to obtain structures with generalization capabilities that are competitive with the state-of-the-art methods.
The use of deep learning approaches for image reconstruction is of contemporary interest in radiology, especially for approaches that solve inverse problems associated with imaging. In deployment, these models may be exposed to input distributions that are widely shifted from training data, due in part to data biases or drifts. We propose a metric based on local Lipschitz determined from a single trained model that can be used to estimate the model uncertainty for image reconstructions. We demonstrate a monotonic relationship between the local Lipschitz value and Mean Absolute Error and show that this method can be used to provide a threshold that determines whether a given DL reconstruction approach was well suited to the task. Our uncertainty estimation method can be used to identify out-of-distribution test samples, relate information regarding epistemic uncertainties, and guide proper data augmentation. Quantifying uncertainty of learned reconstruction approaches is especially pertinent to the medical domain where reconstructed images must remain diagnostically accurate.
Imitation is a key component of human social behavior, and is widely used by both children and adults as a way to navigate uncertain or unfamiliar situations. But in an environment populated by multiple heterogeneous agents pursuing different goals or objectives, indiscriminate imitation is unlikely to be an effective strategy -- the imitator must instead determine who is most useful to copy. There are likely many factors that play into these judgements, depending on context and availability of information. Here we investigate the hypothesis that these decisions involve inferences about other agents' reward functions. We suggest that people preferentially imitate the behavior of others they deem to have similar reward functions to their own. We further argue that these inferences can be made on the basis of very sparse or indirect data, by leveraging an inductive bias toward positing the existence of different \textit{groups} or \textit{types} of people with similar reward functions, allowing learners to select imitation targets without direct evidence of alignment.
Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.
Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.