亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, there has been significant interest in the development of machine learning-based optimization proxies for AC Optimal Power Flow (AC-OPF). Although significant progress has been achieved in predicting high-quality primal solutions, no existing learning-based approach can provide valid dual bounds for AC-OPF. This paper addresses this gap by training optimization proxies for a convex relaxation of AC-OPF. Namely, the paper considers a second-order cone (SOC) relaxation of AC-OPF, and proposes \revision{a novel architecture} that embeds a fast, differentiable (dual) feasibility recovery, thus providing valid dual bounds. The paper combines this new architecture with a self-supervised learning scheme, which alleviates the need for costly training data generation. Extensive numerical experiments on medium- and large-scale power grids demonstrate the efficiency and scalability of the proposed methodology.

相關內容

In recent years, there has been growing interest in utilizing modern machine learning techniques to learn heuristic functions for forward search algorithms. Despite this, there has been little theoretical understanding of what they should learn, how to train them, and why we do so. This lack of understanding has resulted in the adoption of diverse training targets (suboptimal vs optimal costs vs admissible heuristics) and loss functions (e.g., square vs absolute errors) in the literature. In this work, we focus on how to effectively utilize the information provided by admissible heuristics in heuristic learning. We argue that learning from poly-time admissible heuristics by minimizing mean square errors (MSE) is not the correct approach, since its result is merely a noisy, inadmissible copy of an efficiently computable heuristic. Instead, we propose to model the learned heuristic as a truncated gaussian, where admissible heuristics are used not as training targets but as lower bounds of this distribution. This results in a different loss function from the MSE commonly employed in the literature, which implicitly models the learned heuristic as a gaussian distribution. We conduct experiments where both MSE and our novel loss function are applied to learning a heuristic from optimal plan costs. Results show that our proposed method converges faster during training and yields better heuristics.

The advent of Graph Neural Networks (GNNs) has revolutionized the field of machine learning, offering a novel paradigm for learning on graph-structured data. Unlike traditional neural networks, GNNs are capable of capturing complex relationships and dependencies inherent in graph data, making them particularly suited for a wide range of applications including social network analysis, molecular chemistry, and network security. GNNs, with their unique structure and operation, present new computational challenges compared to conventional neural networks. This requires comprehensive benchmarking and a thorough characterization of GNNs to obtain insight into their computational requirements and to identify potential performance bottlenecks. In this thesis, we aim to develop a better understanding of how GNNs interact with the underlying hardware and will leverage this knowledge as we design specialized accelerators and develop new optimizations, leading to more efficient and faster GNN computations. A pivotal component within GNNs is the Sparse General Matrix-Matrix Multiplication (SpGEMM) kernel, known for its computational intensity and irregular memory access patterns. In this thesis, we address the challenges posed by SpGEMM by implementing a highly optimized hashing-based SpGEMM kernel tailored for a custom accelerator. Synthesizing these insights and optimizations, we design state-of-the-art hardware accelerators capable of efficiently handling various GNN workloads. Our accelerator architectures are built on our characterization of GNN computational demands, providing clear motivation for our approaches. This exploration into novel models underlines our comprehensive approach, as we strive to enable accelerators that are not just performant, but also versatile, able to adapt to the evolving landscape of graph computing.

With the advent of machine learning, there have been several recent attempts to learn effective and generalizable heuristics. Local Heuristic A* (LoHA*) is one recent method that instead of learning the entire heuristic estimate, learns a "local" residual heuristic that estimates the cost to escape a region (Veerapaneni et al 2023). LoHA*, like other supervised learning methods, collects a dataset of target values by querying an oracle on many planning problems (in this case, local planning problems). This data collection process can become slow as the size of the local region increases or if the domain requires expensive collision checks. Our main insight is that when an A* search solves a start-goal planning problem it inherently ends up solving multiple local planning problems. We exploit this observation to propose an efficient data collection framework that does <1/10th the amount of work (measured by expansions) to collect the same amount of data in comparison to baselines. This idea also enables us to run LoHA* in an online manner where we can iteratively collect data and improve our model while solving relevant start-goal tasks. We demonstrate the performance of our data collection and online framework on a 4D $(x, y, \theta, v)$ navigation domain.

The acquisition of physical artifacts not only involves transferring existing information into the digital ecosystem but also generates information as a process itself, underscoring the importance of meticulous management of FAIR data and metadata. In addition, the diversity of objects within the cultural heritage domain is reflected in a multitude of descriptive models. The digitization process expands the opportunities for exchange and joint utilization, granted that the descriptive schemas are made interoperable in advance. To achieve this goal, we propose a replicable workflow for metadata schema crosswalks that facilitates the preservation and accessibility of cultural heritage in the digital ecosystem. This work presents a methodology for metadata generation and management in the case study of the digital twin of the temporary exhibition "The Other Renaissance - Ulisse Aldrovandi and the Wonders of the World". The workflow delineates a systematic, step-by-step transformation of tabular data into RDF format, to enhance Linked Open Data. The methodology adopts the RDF Mapping Language (RML) technology for converting data to RDF with a human contribution involvement. This last aspect entails an interaction between digital humanists and domain experts through surveys leading to the abstraction and reformulation of domain-specific knowledge, to be exploited in the process of formalizing and converting information.

In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behavior of dynamic systems is captured by sequences of states. While this representation reflects their relative order, it abstracts away the specific times associated with each state. However, timing constraints are important in many applications like, for instance, when planning and scheduling go hand in hand. We address this by developing a metric extension of linear-time temporal equilibrium logic, in which temporal operators are constrained by intervals over natural numbers. The resulting Metric Equilibrium Logic provides the foundation of an ASP-based approach for specifying qualitative and quantitative dynamic constraints. To this end, we define a translation of metric formulas into monadic first-order formulas and give a correspondence between their models in Metric Equilibrium Logic and Monadic Quantified Equilibrium Logic, respectively. Interestingly, our translation provides a blue print for implementation in terms of ASP modulo difference constraints.

Digital assistants have become ubiquitous in e-commerce applications, following the recent advancements in Information Retrieval (IR), Natural Language Processing (NLP) and Generative Artificial Intelligence (AI). However, customers are often unsure or unaware of how to effectively converse with these assistants to meet their shopping needs. In this work, we emphasize the importance of providing customers a fast, easy to use, and natural way to interact with conversational shopping assistants. We propose a framework that employs Large Language Models (LLMs) to automatically generate contextual, useful, answerable, fluent and diverse questions about products, via in-context learning and supervised fine-tuning. Recommending these questions to customers as helpful suggestions or hints to both start and continue a conversation can result in a smoother and faster shopping experience with reduced conversation overhead and friction. We perform extensive offline evaluations, and discuss in detail about potential customer impact, and the type, length and latency of our generated product questions if incorporated into a real-world shopping assistant.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司