亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Agents in mixed-motive coordination problems such as Chicken may fail to coordinate on a Pareto-efficient outcome. Safe Pareto improvements (SPIs) were originally proposed to mitigate miscoordination in cases where players lack probabilistic beliefs as to how their delegates will play a game; delegates are instructed to behave so as to guarantee a Pareto improvement on how they would play by default. More generally, SPIs may be defined as transformations of strategy profiles such that all players are necessarily better off under the transformed profile. In this work, we investigate the extent to which SPIs can reduce downsides of miscoordination between expected utility-maximizing agents. We consider games in which players submit computer programs that can condition their decisions on each other's code, and use this property to construct SPIs using programs capable of renegotiation. We first show that under mild conditions on players' beliefs, each player always prefers to use renegotiation. Next, we show that under similar assumptions, each player always prefers to be willing to renegotiate at least to the point at which they receive the lowest payoff they can attain in any efficient outcome. Thus subjectively optimal play guarantees players at least these payoffs, without the need for coordination on specific Pareto improvements. Lastly, we prove that renegotiation does not guarantee players any improvements on this bound.

相關內容

Time-Lock Puzzles (TLPs) have been developed to securely transmit sensitive information into the future without relying on a trusted third party. Multi-instance TLP is a scalable variant of TLP that enables a server to efficiently find solutions to different puzzles provided by a client at once. Nevertheless, existing multi-instance TLPs lack support for (verifiable) homomorphic computation. To address this limitation, we introduce the "Multi-Instance partially Homomorphic TLP" (MH-TLP), a multi-instance TLP supporting efficient verifiable homomorphic linear combinations of puzzles belonging to a client. It ensures anyone can verify the correctness of computations and solutions. Building on MH-TLP, we further propose the "Multi-instance Multi-client verifiable partially Homomorphic TLP" (MMH-TLP). It not only supports all the features of MH-TLP but also allows for verifiable homomorphic linear combinations of puzzles from different clients. Our schemes refrain from using asymmetric-key cryptography for verification and, unlike most homomorphic TLPs, do not require a trusted third party. A comprehensive cost analysis demonstrates that our schemes scale linearly with the number of clients and puzzles.

This study demonstrates the application of instruction finetuning of pretrained Large Language Models (LLMs) to automate the generation of AI research leaderboards, extracting (Task, Dataset, Metric, Score) quadruples from articles. It aims to streamline the dissemination of advancements in AI research by transitioning from traditional, manual community curation, or otherwise taxonomy-constrained natural language inference (NLI) models, to an automated, generative LLM-based approach. Utilizing the FLAN-T5 model, this research enhances LLMs' adaptability and reliability in information extraction, offering a novel method for structured knowledge representation.

A Pyramidal Histogram Of Characters (PHOC) represents the spatial location of symbols as binary vectors. The vectors are composed of levels that split a formula into equal-sized regions of one or more types (e.g., rectangles or ellipses). For each region type, this produces a pyramid of overlapping regions, where the first level contains the entire formula, and the final level the finest-grained regions. In this work, we introduce concentric rectangles for regions, and analyze whether subsequent PHOC levels encode redundant information by omitting levels from PHOC configurations. As a baseline, we include a bag of words PHOC containing only the first whole-formula level. Finally, using the ARQMath-3 formula retrieval benchmark, we demonstrate that some levels encoded in the original PHOC configurations are redundant, that PHOC models with rectangular regions outperform earlier PHOC models, and that despite their simplicity, PHOC models are surprisingly competitive with the state-of-the-art. PHOC is not math-specific, and might be used for chemical diagrams, charts, or other graphics.

The concept of differential privacy (DP) has gained substantial attention in recent years, most notably since the U.S. Census Bureau announced the adoption of the concept for its 2020 Decennial Census. However, despite its attractive theoretical properties, implementing DP in practice remains challenging, especially when it comes to survey data. In this paper we present some results from an ongoing project funded by the U.S. Census Bureau that is exploring the possibilities and limitations of DP for survey data. Specifically, we identify five aspects that need to be considered when adopting DP in the survey context: the multi-staged nature of data production; the limited privacy amplification from complex sampling designs; the implications of survey-weighted estimates; the weighting adjustments for nonresponse and other data deficiencies, and the imputation of missing values. We summarize the project's key findings with respect to each of these aspects and also discuss some of the challenges that still need to be addressed before DP could become the new data protection standard at statistical agencies.

3D Gaussian splatting (3DGS) has recently emerged as an alternative representation that leverages a 3D Gaussian-based representation and introduces an approximated volumetric rendering, achieving very fast rendering speed and promising image quality. Furthermore, subsequent studies have successfully extended 3DGS to dynamic 3D scenes, demonstrating its wide range of applications. However, a significant drawback arises as 3DGS and its following methods entail a substantial number of Gaussians to maintain the high fidelity of the rendered images, which requires a large amount of memory and storage. To address this critical issue, we place a specific emphasis on two key objectives: reducing the number of Gaussian points without sacrificing performance and compressing the Gaussian attributes, such as view-dependent color and covariance. To this end, we propose a learnable mask strategy that significantly reduces the number of Gaussians while preserving high performance. In addition, we propose a compact but effective representation of view-dependent color by employing a grid-based neural field rather than relying on spherical harmonics. Finally, we learn codebooks to compactly represent the geometric and temporal attributes by residual vector quantization. With model compression techniques such as quantization and entropy coding, we consistently show over 25x reduced storage and enhanced rendering speed compared to 3DGS for static scenes, while maintaining the quality of the scene representation. For dynamic scenes, our approach achieves more than 12x storage efficiency and retains a high-quality reconstruction compared to the existing state-of-the-art methods. Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering. Our project page is available at //maincold2.github.io/c3dgs/.

The Mixture-of-Experts (MoE) has gained increasing attention in studying Large Vision-Language Models (LVLMs). It uses a sparse model to replace the dense model, achieving comparable performance while activating fewer parameters during inference, thus significantly reducing the inference cost. Existing MoE methods in LVLMs encourage different experts to handle different tokens, and they usually employ a router to predict the routing of each token. However, the predictions are based solely on sample features and do not truly reveal the optimization directions of tokens. This may lead to severe optimization interference between different tokens assigned to an expert. To address this problem, this paper proposes a novel method based on token-level gradient analysis, i.e., Solving Token Gradient Conflict (STGC). Specifically, we first use token-level gradients to identify conflicting tokens in experts. After that, we add a specialized loss tailored to eliminate conflicts among tokens within each expert. Our method can serve as a plug-in for diverse Large Vision-Language Models, and extensive experimental results demonstrate its effectiveness. The code will be publicly available at //github.com/longrongyang/STGC.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司